12F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 65425415 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 2. Intuitively, “All flowers smell the same” is false even for n = 2. Correspond-
ingly, it can be spotted that the following sentence is flawed:

Induction Step: ...Pick any arbitrary z € Y NY’. ...

This move implicitly assumes Y NY’ # & so that = can be picked, which is wrong for n = 2,
where X = {f, f'}, Y =X —-{f}={f},Y =X—-{f}={f},and Y NY' = 2.

2

Peer Review ID: 65425415 — enter this when you fill out your peer evaluation via gradescope

2 2F-2 Mathematical Induction
- 0 pts Correct

Peer Review ID: 65425415 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 3. Prove by induction on the derivation D :: (while bdo x := x4 2,0) |} ¢’; the
goal is to show that if o(x) is even then ¢’(x) is even as well. The base case is when the last
rule used in D is while-false, i.e.,

3 (b,o) |} false
"(whilebdoz:=z+2,0) o

In this case ¢’ = o, and hence obviously if o(z) is even then o’(z) is even as well. Otherwise,
by inversion the last rule used in D must be while-true, i.e.,

(b,0) || true D : (x ==z +2;whilebdox:=z+2,0) |0’

42 %
(whilebdoz:=xz+2,0) | o

Moreover by further inversion on D,

~ {(z==zx+4+2,0)07 D':: (whilebdoz:=xz+2,0) |0
(b,0) || true D g :
(r:=x+2;whilebdoz:=x+2,0) | o
(whilebdoz:=x+2,0) | o

D ::

It is easy to see (while requiring a couple of steps, elaborated below) that o(z) = o(z) + 2.
Hence if o(x) is even, then o(z) is even. Then by inductive hypothesis on D', 5(z) being
even implies that o'(x) is even as well, which completes the induction.

To see why o(z) = o(x) + 2, observe the following (unique) derivation:

(z,o) bolz) (2,0)42
(x+2,0) | o(x)+2
(x:=x+2,0) | oz :=0(x)+2]

3

Peer Review ID: 65425415 — enter this when you fill out your peer evaluation via gradescope

3 2F-3 While Induction
- 0 pts Correct

Peer Review ID: 65425415 — enter this when you fill out your peer evaluation via gradescope

Page 7

Exercise 4. The six new rules are as follows. For throw:

(e,o) I n

(throw e,o) | o excn’

for try:

(c1,0) | o (cr,0) |} 0’ excn (ca,0'lx:=mn]) It
(try ¢; catch z ¢p,0) | o’ (try ¢; catch x ¢o,0) | ¢ ’

and for finally:

(c1,0) | o (ca,0") U t (c1,0) § 0’ excn (ca,0’) I "
(after ¢ finally co,0) ¢’ (after ¢; finally c9,0) || 0" excn’
(c1,0) J 0’ excn (co,0’) |} 0" excm

(after ¢y finally cy,0) || 0’ exc m

4

Peer Review ID: 65425415 — enter this when you fill out your peer evaluation via gradescope

4 2F-4 Language Features, Large Step
- 0 pts Correct

Peer Review ID: 65425415 — enter this when you fill out your peer evaluation via gradescope

Page 9

Exercise 5. I agree with the claim that it is “more elegant” to describe “IMP with excep-
tions” using small-step contextual semantics. Compared with large-step semantics, small-
step semantics follows the style of repeatedly rewriting expressions/commands in a program,
and this kind of rewriting could lead to especially elegant description of exceptions. E.g. the
following rule for try

(c1,0) |} 0’ excn (co,0' [z :=n]) | ¢t

(try ¢ catch x cp,0) | t

can be carried out by resolving c; generically using context try e catch x ¢y and then
rewriting using reduction rule

(try throw n catch x ¢p,0) — (r :=n;c9,0) ,

avoiding having some relatively heavy term o'[x := n], which should be viewed as some
non-elegant duplicate work with the rule for assignment.! Similarly, and more significantly,
the following two rules for finally

(c1,0) J 0’ excn (co,a’) | 0" (c1,0) | 0’ excn (co, 0’y |} 0" excm

(after ¢; finally cg,0) | 0" excn’ (after ¢ finally c¢y,0) || 0” exc m
can be unified by one single reduction rule
(after throw n finally ¢z, 0) — (c2; throw n,o) .

Besides these simplifications in rules,? it is also, while personally, more elegant not to have
some union termination type but to still use merely o everywhere and to let terminal com-
mands skip / throw n manifest whether a program terminates normally or exceptionally.

!The other rule for try might correspond to reduction rule
(try skip catch x ¢y,0) — (skip, o) .

Also by comparing these two reduction rules for try it is clear that the terminal commands now become
both skip and throw n, and it is elegant that the reduction rules for try simply deal with both cases.

20ne might argue that all these benefits for try and finally were not genuine as we might as well have
the following rules in large-step semantics:

(c1,0) |} 0’ excn (x :==n5ce,0") | t (c1,0) o' excn (co; throw n,o’) | t

7

(try ¢1 catch x ca,0) | t (after ¢; finally co,0) | ¢

However this argument is not necessarily valid, as n is mathematical integer in |} ¢’ exc m, while in the
commands z := n and throw n, n should be program literal, and it is vague whether this kind of matching
is allowed in large-step semantics. (There could be workaround e.g. by adding another condition (e,o’) | n
and using x := e and throw e instead, which however becomes super non-elegant.)

5

Peer Review ID: 65425415 — enter this when you fill out your peer evaluation via gradescope

5 2F-5 Language Features, Analysis
- 0 pts Correct

Peer Review ID: 65425415 — enter this when you fill out your peer evaluation via gradescope

Page 11

