2 Exercise 2F-2. Mathematical Induction

We are given the following faulty proof:

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F'.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

P(n) ¥ vX e P(F). |X|<n = (Vf, f' € X. smells(f) = smells(f))

(the notation | X| denotes the number of elements of X)

One way to formulate the statement to prove is Vn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n+1. Pick an arbitrary set X such that | X| = n+1. Pick two distinct flowers
f, /" € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and Y' = X — {f'}.
Obviously Y and Y’ are sets of size at most n so the induction hypothesis holds for both
of them. Pick any arbitrary x € Y NY’. Obviously, z # f and = # f’. We have that
smells(f") = smells(z) (from the induction hypothesis on Y) and smells(f) = smells(z) (from
the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the inductive
step, and the theorem.

Explanation of Error: In order for this inductive step to hold, it must work with any
n > 1(and the corresponding n+1 > 2). In the case of n =1, | X| = 2. If we pick a distinct
ffeX, thenY =X—{f}={ftandY' = X —{f'} = {f}, so Y NY" is empty, and thus
there is no x € Y NY”’ and the proof cannot continue. Because the proof fails at n = 1, it
cannot be used to prove the inductive step down to the base case, and the proof is invalid.

3 Exercise 2F-3. While Induction

Base Cases: When b is false, the do statement is not executed, then o(z) remains un-
changed, and is thus even.

(b,o) | false (whilebdox:=z+2,0) {0
(skip, o) | o (skip,0) J o

o==2¢o
o'(x) is even

o(z) is even

Inductive Case: When b is true, then x is incremented by two. Even numbers are
closed under addition, so x + 2 is also even.

Peer Review ID: 305608827 — enter this when you fill out your peer evaluation via gradescope

Questions assigned to the following page: 3 and 4

Peer Review ID: 305608827 — enter this when you fill out your peer evaluation via gradescope

Lemma 1:
(x:=x+2,0) 0y

o1(z) =o(x) +2
o1(z) is even

o(zx) is even

Final Proof:
(b,o) | true (whilebdo z:=x+2,0) | o
(x:=x+2;whilebdoz:=2+2,0) | o
(while bdo z :=x +2,04) |} 0’
o1(z) is even

(x:=x+2,0) |0y
Lemma 1

After each iteration, b will either be true or false, thus by induction upon iterations, the
final state of o’(x) will be even.

4 Exercise 2F-4. Language Features, Large-Step

Throw Command: The throw command adds an exception to the current state, with the
edge case that if there is already an exception, it yields to the existing one. This design is
implemented so the user knows the first exception derived among multiple, allowing them
to pinpoint the source of an issue.

(throw n,0) || 0 exc n

Try Command: There are two cases, if ¢; terminates without exception, the catch
statement is skipped. If ¢; ends in exception, then z is assigned the exception value and ¢y
is executed immediately after.

(c1,0) | o
(try ¢; catch x ¢y, 0) |} 0

(cr,0) 0’ excn (x:=n;cp,0") |} 0"

(try ¢; catch x ¢o,0) || 0”

Finally Command: There are three different cases. If ¢; terminates without exception,
Co is ran and output is returned as usual. If ¢; has an exception, ¢y executes and the exception
is carried, unless co throws its own exception which will override it.

(er,0) o’ {ea,0) It
(after ¢; finally cp,0)) ¢

Peer Review ID: 305608827 — enter this when you fill out your peer evaluation via gradescope

Questions assigned to the following page: 4 and 5

Peer Review ID: 305608827 — enter this when you fill out your peer evaluation via gradescope

(c1,0) J 0" excn {(cg,0") | 0”

(after ¢; finally cp,0) |} 0" exc n

(c1,0) J 0" excn {co,0") || 0" exc ny

(after ¢; finally co,0) |} 0” exc ng

5 Exercise 2F-4. Language Features, Analysis

Small step semantics are more natural than large step semantics to describe exceptions,
because they describe a sequence of execution one step at a time. Exceptions can be naturally
thought of in terms of a sequence of execution, where the exception is carried in subsequent
steps. This also holds for the try-catch and the after-finally clauses, where the continuation
and catching/rethrowing behavior is more reasonable when considered in small steps instead
of all at once.

Peer Review ID: 305608827 — enter this when you fill out your peer evaluation via gradescope

