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Exercise 2F-2. Mathematical Induction [5 points]. -

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F'.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

def

P(n) = VX € P(F). |X|<n = (Vf, f € X. smells(f) = smells(f"))

(the notation | X | denotes the number of elements of X)

One way to formulate the statement to prove is Yn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n+1. Pick an arbitrary set X such that | X| = n+1. Pick two distinct flowers
f, f' € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and Y' = X — {f'}.
Obviously Y and Y’ are sets of size at most n so the induction hypothesis holds for both
of them. Pick any arbitrary z € Y NY’. Obviously, z # f and = # f’. We have that
smells(f’) = smells(x) (from the induction hypothesis on Y') and smells(f) = smells(z) (from
the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the inductive
step, and the theorem.

This proof falls apart during the inductive step with values n =1 and n+ 1 = 2. In this
situation, where | X| = 2, the set Y would simply be {f'} and Y’ would be {f}. This makes
the set Y NY’ would be empty. We wouldn’t be able to choose an element z in this case,
and the highlighted sentence impossible to prove.
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Exercise 2F-3. While Induction [10 points]. -

Proof:
For any BExp b and any initial state ¢ where o(x) is even, we will prove that if
(whilebdo z:=x+2,0) | o’

then o’(x) is even. We will prove this by induction on the structure of the derivation.

Base Case:

Dy :: (b, o) | false
D :: (whilebdoz:=z+2,0) |0

This will be our base case since this rule has no subderivations we can induct on. In this
rule, the BExp b evaluates to false. Because of that, the state ¢ does not change from the
while command. Therefore, o(z) will remain even and the property holds for the base case.

Inductive Case:

Dy::(b, o) ytrue Dy:z:=x+1,0 0" D;3: (whilebdo z:=x+2,0") | o0
D : (whilebdoz:=z+2,0) | o

This is the rule for when b evaluates to true.

In Dy, x’s value is increased by 2, and this results in state 0” (0" == o[z := z + 2]). By
general math rules, adding an even number to an even number results in a sum that is also
even. In this situation, since o(z) is even and 2 is even the addition of = + 2 will also be
even. Which means that ¢”(x) will be even.

Because ¢” is used for D3, and because ¢”(x) is even, we can apply the inductive step

and assume that the property holds for Ds. In other words ¢’(x) will be even, which proves
the inductive step and finishes the proof.
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Exercise 2F-4. Language Features, Large-Step [12 points]. -
(e, o) I n

(throw e, o) |} 0 exc n

The above rule is for the throw command. There is only one possible inference rule, one
possible outcome, where the expression e is evaluated and the resulting value n is thrown.
Because the state doesn’t change, the exception gets thrown with the original state o

(c1, oy | o

(try c1 catch x ¢y, o) |} o’

The above rule is the first for the try command. This is the rule for when ¢; completes
without throwing an exception. In this situation, the try command will also terminate nor-
mally with the state ¢’ that ¢; ended with.

(cr, o)y o' exen (x:=n.0") ) o'lx:=n] (c,0'[xt:=n]) |t

(try c1 catch x ¢, o) | t

The above rule is the second for try. In this rule, ¢; throws an exception. When that
happens, the next step is to assign the value n that c¢; threw to x, which creates a new
state o’[x := n], and then execute ¢, with this new state. However ¢, terminates, either
successfully or with an exception, is how try will also terminate.

(c1, oy o’ {ca, o) Ut
(after c1 finally co, o) |t

The above rule is the first for finally. In this rule, ¢; executes normally. In this situation,
co is executed and however ¢y terminates is how finally will terminate.

(c1, oy 0’ exc ey {co, 0') | 0”
(after ¢y finally co, o) || 0" exc e;

The above rule is the second for finally. Here, ¢; throws an exception and ¢y executes
normally. With this, finally will throw an exception with the e; value that ¢; threw, and the
o” state that ¢y terminated with.

(c1, o) J 0’ excer (ca, 0') || 0" exc ey
(after c1 finally co, o) |} 0" exc ey

The above rule is the third for finally. Here, both ¢; and ¢y throw exceptions. In this
situation, finally will terminate with the ey value that ¢y threw and the state ¢” from ¢, as
well.
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Exercise 2F-5. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

[ am going to argue that it would be much more natural/elegant to represent ”IMP
with exceptions” using large-step semantics as opposed to small-step semantics. The entire
exception throwing system is built on a hierarchy. Exceptions are thrown up the levels of a
hierarchy until it reaches a level that catches it. And since each level has multiple different
branches, this hierarchy becomes a tree-structure. Large-step semantics already follow a tree
structure, which will make it easy to trace exactly where the exception will end up getting
caught and what will be done with it. With small-step semantics, the rules are listed out as
a List, which will make it much harder to follow the hierarchy for where the exception will
end up getting caught.
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