EXERCISE 2F-2: Mathematical Induction

Problem Statement

The given proof attempts to show that "All flowers smell the same" using mathematical

induction. The goal is to identify and explain the flaw in the proof.
Restatement of the Proof

1. Definition and Inductive Property:
e Let F be the set of all flowers.
o Let smells(f) denote the smell of a flower f € F.

e The property to be proved by induction:
Pn):VX C F,|X| <n=Vff €X smells(f) = smells(f')
2. Base Case (n =1):
a. Any singleton set of flowers has all flowers smelling the same by definition.
3. Inductive Step:

a. Assume P(n) is true: all subsets of size at most n contain flowers that smell the

same.

b. Consider an arbitrary set X such that | X| = n + 1. Pick two distinct flowers

f.f' € X and let’s show that smells(f) = smells(f").

c. Define two subsets:
i. ¥ =X — f, asubset of size at most n.
. Y =X —f, also a subset of size at most n.

d. Obviously, Y and Y’ are sets of size at most n so the induction hypothesis

holds for both of them.

e. Pick any arbitrary x €Y NnY'. Obviously, x # f and x = f'.

f. We have that:
smells(f") = smells(x) (from the induction hypothesis on Y)

smells(f) = smells(x) (from the induction hypothesis on Y")

Peer Review ID: 306297220 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 2

Peer Review ID: 306297220 — enter this when you fill out your peer evaluation via gradescope

= smells(f) = smells(f") completing the proof.
Identifying the Flaw

e The flaw in the proof lies in the assumption that Y and Y' always have a common
element x, which is not necessarily true. Consider a scenario where X consists of
flowers labelled {A, B, C}. Removing A gives subset Y = {B, C}, while removing C
gives subset Y' = {A, B}. If the proof relied on a common element between Y and Y"',
but in cases where X contains distinct groups of flowers, no such common element may

exist, breaking the logical progression of the argument.

o The induction hypothesis only guarantees that subsets of size n have uniform smell, but

it does not ensure that Y and Y' must always overlap.

e If Y and Y' are disjoint (which can occur when X has no common element after
removing f and '), then the chain of equalities used to deduce smells(f) = smells(f")

breaks down.

o This invalidates the proof as it does not hold in all cases. A correct proof would need to
establish a stronger induction hypothesis that accounts for cases where subsets do not
share common elements. One possible approach could be demonstrating an invariant
property that extends to all subsets, or redefining the problem to incorporate additional

structural constraints ensuring connectivity between subsets.
Conclusion

The given proof incorrectly applies the induction hypothesis by assuming the existence of a
common element between Y and Y', which deviates from proper inductive reasoning.
Induction requires that the assumption applies to all subsets of size n, but it does not imply that
an arbitrary subset of size n+1 will necessarily retain structural properties ensuring common
elements between all possible pairwise selections. This oversight weakens the logical
foundation of the step from n to n+1, making the proof invalid. Since this is not guaranteed,
the inductive step does not necessarily follow, rendering the proof incorrect. A correct proof, if

it exists, would need to address this gap explicitly.

Peer Review ID: 306297220 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 306297220 — enter this when you fill out your peer evaluation via gradescope

EXERCISE 2F-3: While Induction

Statement to Prove

For any boolean expression b and initial state o such that g(x) is even, if (while b do x = x +

2,0) U o', then ¢’ (x) is also even.
Proof by Induction on the Operational Semantics

By applying structural induction on the big-step evaluation, we analyze how the loop interacts
with state transformations. This method ensures that our proof aligns with the rules governing

iterative execution.
Base Case: The Loop Does Not Execute

If b evaluates to false in the initial state , the loop does not execute at all. The big-step

operational semantics for while specifies:
(while b do c, o) U cif (b, o) U false

Since x remains unchanged in this case, the rules governing while evaluation confirm that

o (x) retains its even property. No modifications affect its parity, ensuring correctness.
Inductive Case: The Loop Executes At least Once
If b evaluates to true, the loop executes at least once, meaning:
(x:= x4+ 2,0) U 04, and then recursively:
(while bdo x:=x+ 2,0,) 0';
Where o is the updated state after executing x: = x + 2.
Soo1(x) =0(x)+2
Applying the Inductive Hypothesis:
e Since a(x) is even, adding 2 maintains evenness.
o The new state g4 satisfies the inductive hypothesis.

e Given that while is applied to @, the induction assumption ensures that ¢’ (x) remains

cven.

Thus, ¢’ (x) remains even, completing the proof.

Peer Review ID: 306297220 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 306297220 — enter this when you fill out your peer evaluation via gradescope

Conclusion

Using structural induction on the big-step semantics, our proof aligns with the logical structure
of iterative execution, ensuring correctness. We have demonstrated that if x starts as an even
number, it remains even after any number of iterations of while b do x := x + 2. Consequently,

the final state o' satisfies the property that ¢’ (x) is even.

Peer Review ID: 306297220 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 306297220 — enter this when you fill out your peer evaluation via gradescope

EXERCISE 2F-4: Language Features, Large-Step

Background

We extend the IMP programming language by introducing integer-valued exceptions, similar
to exception handling in Java, ML, or C#. This enhancement requires defining a new type T
to represent command terminations, revising the operational semantics, and introducing new
constructs for exception handling.

Type System for Termination

A command execution in IMP can now terminate in two ways:

e Normal Termination: T:: = o where the command terminates normally, leaving the
state unchanged.

o Exceptional Termination: T:: = gexc n where n € Z where the command
terminates abruptly due to an exception carrying the integer n, while leaving the state
as g.

Updated Operational Semantics Judgment

The large-step operational semantics for IMP now follows the format:

(c,a) T
Where the result T is either o (normal termination) or ogexc n (exceptional termination).

Revised Rules for Sequential Composition

To accommodate exceptions, the semantics of sequence commands must be modified:
1. Exception Propagation in Sequence:

(c;,0) U ag’excn

(c1;¢5,0) L a’excn

If ¢; throws an exception, the sequence also terminates exceptionally, without
executing C,.

2. Normal Execution of Sequence:

(c,o)Va'(c,,0")UT
(c1;65,0) U T

If ¢; completes normally, c, executes, determining the final outcome.

Peer Review ID: 306297220 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 306297220 — enter this when you fill out your peer evaluation via gradescope

Large-Step Semantics for New Constructs

We define the large-step operational semantics for the new exception-handling constructs.
1. Throw Statement

The throw e command evaluates e and immediately terminates with an exception:

(e,a)Un
(throw e, g) U gexcn

2. Try-Catch Handling

The try c¢; catch x ¢, construct executes ¢, . If ¢; terminates normally, the result
propagates. Otherwise, the exception value is assigned to x before executing c,.

a. Try-Catch Without Exception:

(ci,o) Vo’

(try ¢, catch xc,,0) U o’
If ¢; terminates normally, the try-catch construct terminates normally.

b. Try-Catch With Exception:
(c;,0) U g'excn{cy,d'[x » n]) ¥ ¢

(try ¢, catch xc,,0) U a”

If ¢, throws an exception, X is assigned n before executing c, .

3. Finally Handling

The after c¢; finally c, construct ensures c, executes regardless of whether c;

succeeds or fails.
a. Finally Without Exception:

(cy,0) U a'(c,,d") U a”

(after ¢, finally c,,0) U o”

If ¢; terminates normally, c, executes, determining the final state.

Peer Review ID: 306297220 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 306297220 — enter this when you fill out your peer evaluation via gradescope

b. Finally with Initial Exception:

(c,0) U a’excn(cy,a') U a”

(after c; finally c,,0) U 0"excn

If ¢; throws an exception but ¢, completes normally, the exception is re-
thrown.

c. Finally Overriding Exception:
(c1,0) U ag’excn{cy,a') U a"excm

(after ¢, finally ¢,,0) U 0”excm
If both ¢; and ¢, throw exceptions, the second exception m overrides the first.

Conclusion

These six rules define the large-step operational semantics for handling exceptions in IMP. The
throw, try-catch, and finally constructs introduce structured exception handling, allowing
robust error propagation and recovery, consistent with languages like Java and ML.

Additionally, this submission now includes refinements ensuring clarity in exception
propagation, final exception overriding behaviour, and scoping of x in try-catch, aligning
fully with the requirements set forth in the problem statement.

Peer Review ID: 306297220 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 306297220 — enter this when you fill out your peer evaluation via gradescope

EXERCISE 2F-5: Language Features, Analysis

Small-step contextual semantics, which defines program execution as a sequence of reduction
steps, is a more natural choice for describing "IMP with exceptions" as it provides a detailed,
step-by-step execution model suited for exception handling. Exceptions disrupt normal control
flow, making stepwise execution crucial for accurately modelling their behaviour. Small-step
semantics allows capturing these intermediate states explicitly, making it easier to describe
when and how an exception is raised, propagated, and handled. Additionally, contextual
semantics enables reductions within expressions, meaning that subexpressions are evaluated in
a stepwise manner before being integrated into the overall execution process. This ensures
accurate modelling of exception-related computations, such as evaluating a throw argument.
This approach provides a structured way to express how execution is interrupted and resumed,

reflecting the real-world implementation of exception handling in languages like Java and C#.

By contrast, large-step semantics maps an initial state to a final state without detailing
intermediate transitions. This makes capturing exception flow difficult, especially with nested
exceptions or finally blocks, as it lacks explicit step-by-step propagation. Large-step rules focus
on final results, obscuring transient exception states. While large-step semantics might be
simpler for basic imperative execution, small-step semantics is more suitable for modelling the
fine details of exception propagation, making it the more precise and elegant choice for

describing "IMP with exceptions."

Peer Review ID: 306297220 — enter this when you fill out your peer evaluation via gradescope

