12F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 65808998 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F'.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

P(n) VX € P(F). |X|<n = (Vf, f € X. smells(f) = smells(f"))
(the notation | X | denotes the number of elements of X)

One way to formulate the statement to prove is Yn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n+1. Pick an arbitrary set X such that | X| = n+1. Pick two distinct flowers
f, f' € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and Y' = X — {f'}.
Obviously Y and Y’ are sets of size at most n so the induction hypothesis holds for both
of them. Pick any arbitrary x € Y NY’. Obviously, x # f and = # f’. We have that
smells(f’) = smells(z) (from the induction hypothesis on Y) and smells(f) = smells(x) (from
the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the inductive
step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

e I highlighted the above sentence because, by introducing a set of n + 1
flowers, the “inductive chain” is broken, and thus the inductive hypothesis
does not hold. Up to this point, we’ve only said provable things about
subsets of n flowers, so for all we know, the n + 1-th flower might break
something. Later, when the sets Y and Y’ are picked, we have shuffled
this mysterious n + 1-th flower into one—or both—of the sets! Since we
know nothing about this new flower, we can no longer claim the induction
hypothesis is true, since we have not shown that it smells like any other
flower. Otherwise, the argument would be circular because we would then
have to assume the original subset of size n+ 1 already contains flowers that
all smell the same, and we would have assumed the conclusion.

Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:
For any BExp b and any initial state o such that o(z) is even, if

(whilebdo z :=x+2,0) | ¢

2

Peer Review ID: 65808998 — enter this when you fill out your peer evaluation via gradescope

2 2F-2 Mathematical Induction
- 0 pts Correct

Peer Review ID: 65808998 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F'.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

P(n) VX € P(F). |X|<n = (Vf, f € X. smells(f) = smells(f"))
(the notation | X | denotes the number of elements of X)

One way to formulate the statement to prove is Yn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n+1. Pick an arbitrary set X such that | X| = n+1. Pick two distinct flowers
f, f' € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and Y' = X — {f'}.
Obviously Y and Y’ are sets of size at most n so the induction hypothesis holds for both
of them. Pick any arbitrary x € Y NY’. Obviously, x # f and = # f’. We have that
smells(f’) = smells(z) (from the induction hypothesis on Y) and smells(f) = smells(x) (from
the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the inductive
step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

e I highlighted the above sentence because, by introducing a set of n + 1
flowers, the “inductive chain” is broken, and thus the inductive hypothesis
does not hold. Up to this point, we’ve only said provable things about
subsets of n flowers, so for all we know, the n + 1-th flower might break
something. Later, when the sets Y and Y’ are picked, we have shuffled
this mysterious n + 1-th flower into one—or both—of the sets! Since we
know nothing about this new flower, we can no longer claim the induction
hypothesis is true, since we have not shown that it smells like any other
flower. Otherwise, the argument would be circular because we would then
have to assume the original subset of size n+ 1 already contains flowers that
all smell the same, and we would have assumed the conclusion.

Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:
For any BExp b and any initial state o such that o(z) is even, if

(whilebdo z :=x+2,0) | ¢

2

Peer Review ID: 65808998 — enter this when you fill out your peer evaluation via gradescope

then o'(z) is even.

Assume there is a derivation
D :: (while b do x:=x+2,0) | o

Now choose some BExp b and o where o(x) is even.

Base Case: z :=x + 2
Known fact about integers

(x .=z +2,0) | o/(x) even

BExp’s are not invertible, but we know that in big-step semantics, b must eventually evaluate
to either true or false.

Inductive Case 1: b is false

Dy (b,o) |} false

(while b do z:=x+2,0) o

o(x) is even because we assumed it.

Inductive Case 2: b is true

base case
Ds :: Dy :: (while b do z:=z+2,0") | o”
(x :=x+2,0) | 0'(z) even
Dy::—F——— Dy:: _
(b,0) | true (x :==x+42; while b do z:=x+ 2, o) || 0’ (x) even

(while b do z:=z+2, 0) | 0"(z) even
e D;: Assumption
e D,: This is expanding the rule of while true

e Dj3: Calling the base case

e Dy: ‘ Induct on this ‘ since it very closely resembles our original assumption. We assume
the inductive hypothesis, that is, we assume this keeps x an even number.

Exercise 2F-4. Language Features, Large-Step [12 points].
(e, 0) I n

(throw e, o) |} 0 exc n

(Assuming that the argument e to throw can be any arithmetic expression that could evaluate
to an integer)

{c1, o) | o

(try c; catch z ¢, 0) || o

3

Peer Review ID: 65808998 — enter this when you fill out your peer evaluation via gradescope

3 2F-3 While Induction
- 0 pts Correct

Peer Review ID: 65808998 — enter this when you fill out your peer evaluation via gradescope

Page 8

then o'(z) is even.

Assume there is a derivation
D :: (while b do x:=x+2,0) | o

Now choose some BExp b and o where o(x) is even.

Base Case: z :=x + 2
Known fact about integers

(x .=z +2,0) | o/(x) even

BExp’s are not invertible, but we know that in big-step semantics, b must eventually evaluate
to either true or false.

Inductive Case 1: b is false

Dy (b,o) |} false

(while b do z:=x+2,0) o

o(x) is even because we assumed it.

Inductive Case 2: b is true

base case
Ds :: Dy :: (while b do z:=z+2,0") | o”
(x :=x+2,0) | 0'(z) even
Dy::—F——— Dy:: _
(b,0) | true (x :==x+42; while b do z:=x+ 2, o) || 0’ (x) even

(while b do z:=z+2, 0) | 0"(z) even
e D;: Assumption
e D,: This is expanding the rule of while true

e Dj3: Calling the base case

e Dy: ‘ Induct on this ‘ since it very closely resembles our original assumption. We assume
the inductive hypothesis, that is, we assume this keeps x an even number.

Exercise 2F-4. Language Features, Large-Step [12 points].
(e, 0) I n

(throw e, o) |} 0 exc n

(Assuming that the argument e to throw can be any arithmetic expression that could evaluate
to an integer)

{c1, o) | o

(try c; catch z ¢, 0) || o

3

Peer Review ID: 65808998 — enter this when you fill out your peer evaluation via gradescope

(c1,0) 0’ exc e (ca,0'[x:=¢]) |t
(try ¢y catch x cp, 0) |t

(c1, o) o' g, 0’ It
(after ¢ finally ¢y, 0) | ¢t

(c1,0) | 0’ exc ey {(cy, o) |} 0"
(after c; finally cy, o) || 0" exc e;

(cr,0) 0" exc e; (co, o) I 0" exc ey

(after c; finally ¢y, o) |} 0" exc ey

Exercise 2F-5. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

In my opinion, I believe it is actually more natural for IMP with exceptions
to be described in large-step rather than small-step semantics. The reason for
this is that large-step expresses programs in an “eventually something happens”
fashion, which seems to more readily capture the essence of runtime errors.
Small-step, on the other hand, tends to be more direct and explicit, and while
it certainly would have no trouble with exceptions, it almost implies that excep-
tions are predictable, lacking the eventuality of large-step. Aside from high-level
philosophical arguments, small-step seems to be more cumbersome to implement,
especially when considering the after-finally rules, as it would require several
different contexts and reduction rules, or some clever manipulation of tempo-
rary storage variables, in order to keep track of terminations and exit codes.
Therefore, I believe that large-step seems more natural for handling IMP with
exceptions.

4

Peer Review ID: 65808998 — enter this when you fill out your peer evaluation via gradescope

4 2F-4 Language Features, Large Step
- 0 pts Correct

Peer Review ID: 65808998 — enter this when you fill out your peer evaluation via gradescope

Page 11

(c1,0) 0’ exc e (ca,0'[x:=¢]) |t
(try ¢y catch x cp, 0) |t

(c1, o) o' g, 0’ It
(after ¢ finally ¢y, 0) | ¢t

(c1,0) | 0’ exc ey {(cy, o) |} 0"
(after c; finally cy, o) || 0" exc e;

(cr,0) 0" exc e; (co, o) I 0" exc ey

(after c; finally ¢y, o) |} 0" exc ey

Exercise 2F-5. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

In my opinion, I believe it is actually more natural for IMP with exceptions
to be described in large-step rather than small-step semantics. The reason for
this is that large-step expresses programs in an “eventually something happens”
fashion, which seems to more readily capture the essence of runtime errors.
Small-step, on the other hand, tends to be more direct and explicit, and while
it certainly would have no trouble with exceptions, it almost implies that excep-
tions are predictable, lacking the eventuality of large-step. Aside from high-level
philosophical arguments, small-step seems to be more cumbersome to implement,
especially when considering the after-finally rules, as it would require several
different contexts and reduction rules, or some clever manipulation of tempo-
rary storage variables, in order to keep track of terminations and exit codes.
Therefore, I believe that large-step seems more natural for handling IMP with
exceptions.

4

Peer Review ID: 65808998 — enter this when you fill out your peer evaluation via gradescope

5 2F-5 Language Features, Analysis
- 0 pts Correct

Peer Review ID: 65808998 — enter this when you fill out your peer evaluation via gradescope

Page 13

