12F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 65761272 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F'.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

def

P(n) =VX e P(F). | X|<n = (Vf, f' € X. smells(f) = smells(f))

(the notation | X | denotes the number of elements of X)

One way to formulate the statement to prove is Yn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let m be arbitrary and assume that all subsets of F' of size at most
n contain flowers that smell the same. We will prove that the same thing holds for all
subsets of size at most n + 1. Pick an arbitrary set X such that |X| = n + 1. Pick two
distinct flowers f, f' € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and
Y'= X — {f'}. Obviously Y and Y’ are sets of size at most n so the induction hypothesis
holds for both of them. Pick any arbitrary z € Y N'Y”’. Obviously, z # f and x # f’. We have
that smells(f") = smells(z) (from the induction hypothesis on Y') and smells(f) = smells(z)
(from the induction hypothesis on Y”). Hence smells(f) = smells('), which proves the induc-
tive step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

The highlighed section is incorrect since the value z does not exist in the n 4+ 1 = 2 case, so
the inductive step does not apply for all values greater than 1. In the n = 2 case, X = {f, f'},
oY = X —{f} = {f}and Y’ = X —{f'} = {f}. YY" = {f}n{f} = {}. Since ¥ = {},
no x exists such that € Y. Thus, the rest of the highlighted section does not apply for the
case of n = 2, since this x value does not exist. This proves this inductive step is incorrect,
since it does not hold for all n + 1 = 2 case.

2

Peer Review ID: 65761272 — enter this when you fill out your peer evaluation via gradescope

2 2F-2 Mathematical Induction
- 0 pts Correct

Peer Review ID: 65761272 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:
For any BExp b and any initial state o such that o(z) is even, if

(whilebdo z:=x+2,0) | o

then o’(x) is even. Make sure you state what you induct on, what the base case is and what
the inductive cases are. Show representative cases among the latter. Do not do a proof by
mathematical induction!

To Prove: Vb € Bexp.(while bdo z :=x+2,0) || 0’,0'(2)%2 = 0 given that o(z)%2 = 0.
Pick an arbitrary o such that o(x)%2 =0 and D :: (while bdo z :=z + 2,0)
Prove by structure of the derivation D
Case 1: Pick arbitrary b such that D1 :: (b,0) || false

B D1:: (b,o) || false
" (whilebdoz:=x2+2,0) | o

It is given that o(x) is even, so because (while bdo z := x + 2,0) |} o, then ¢’(x) = ¢ and
the assertion holds that ¢'(x) is even.
This is a base case.

Case 2: Pick arbitrary b such that D2 :: (b,0) | true

(z,0) $ o(z) (2,0) | 2
(x:=x+2,0 o[z :=0(x)+2]
- D3:(whilebdo v:=x+2,0[x:=0(x)+2]) |0

(whilebdo z:=x+2,0) | o

D2 :: (b,o) || true

By mathematical rules, (o(z) + 2)%2 = 0, meaning o[z := o(z) + 2] fufills the require-
ment of the value of z being even. For brevity, we will refer to o[z := o(z) + 2] as o’

By inversion, D3 will follow the same rules as D.

If (b,0”) || false, then we have reached Case 1. Because Case 1 has already been proven
true, Case 2 is also true in this case. This is a basic inductive case.

3

Peer Review ID: 65761272 — enter this when you fill out your peer evaluation via gradescope

If (b,0”) || true, then we have reached Case 2 again. Since a single step has proven to
hold that ¢”(x) is even, by the inductive hypothesis, o’(x) is even. This is a base case.

Since both possible evaluated values for b in D3 have been considered and proven that
o'(z) remains even in both cases, the assertion that ¢’(x) is even has been proven in Case 2.

Since the assertion has been proven in Case 1 and Case 2, the assertion has been proven for

all possible evaluated values for b € BExp and the assertion has been proven true on the
whole.

4

Peer Review ID: 65761272 — enter this when you fill out your peer evaluation via gradescope

3 2F-3 While Induction
- 0 pts Correct

Peer Review ID: 65761272 — enter this when you fill out your peer evaluation via gradescope

Page 8

Exercise 2F-4. Language Features, Large-Step [12 points].
notion of integer-valued exceptions (or run-time errors), as in Java, ML or C#. We introduce
a new type T to represent command terminations, which can either be normal or exceptional

(with an exception value n € Z).

Give the large-step operational semantics inference rules (using our new judgment) for the

throw e
try ¢; catch x ¢
after ¢; finally ¢,

three new commands presented here. You should present six (6) new rules total.

Peer Review ID: 65761272

(e,o) I n

(throw e,0) || 0 exc n

(c1,0) | o

(try ¢; catch x ¢y,0) | o

(cr,0) | o' exen (cy,0'[x:=n]) |t

(try ¢1 catch x cp,0) | ¢

(cr,0) 4o’ {e2,0) Ut
(after ¢ finally z ¢co,0) | t

(c1,0) |} 0’ exe e1 {(co,0') |} 0

(after ¢ finally z cp,0) |} 0" exe e;

(c1,0) | o’ exe ey {cy,0') |} 0" exe ey

(after ¢ finally z co,0) || 0" exe es

5

enter this when you fill out your peer evaluation via gradescope

We extend IMP with a

4 2F-4 Language Features, Large Step
- 0 pts Correct

Peer Review ID: 65761272 — enter this when you fill out your peer evaluation via gradescope

Page 10

Exercise 2F-5. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

I agree with the assertion that it would be more natural to describe “IMP with excep-
tions” using small-step contextual semantics. This is due to the use of contexts in small-step
contextual semantics. Much of the behavior of the execption handling changes based on in
what context the current command is executing from. For example, in after finally , there
is prescidence of an exception thrown in the finally block over the exception thrown in the
after block. However, in large step semantics it may be less elegant to keep track of the
separate execption statements as there is no specific ordering in large step, ordering is only
differentiated by having separate variables. Having the concept of contexts can better model
the different meanings for exceptions depending on what statement they appear in. Also,
small step semantics has ordering of execution as part of the structure, so this can make the
expression for order of exceptions easier to follow and more natural. This makes small-step
contextual semantics more natural than large-step, and better conveys the different meanings
of exceptions in different statements.

6

Peer Review ID: 65761272 — enter this when you fill out your peer evaluation via gradescope

5 2F-5 Language Features, Analysis
- 0 pts Correct

Peer Review ID: 65761272 — enter this when you fill out your peer evaluation via gradescope

Page 12

