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Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Answer:

“ Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F.
(The range of smells is not so important, but we’ll assume that it admits equality.) We'll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

def

P(n) =VX € P(F). |X|<n = (Vf, f' € X. smells(f) = smells(f"))

(the notation | X | denotes the number of elements of X)

One way to formulate the statement to prove is Vn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n+1. Pick an arbitrary set X such that | X| = n+1. Pick two distinct flowers
f, f' € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and Y' = X — {f'}.
Obviously Y and Y’ are sets of size at most n so the induction hypothesis holds for both
of them. Pick any arbitrary z € Y NY’. Obviously, z # f and z # f’. We have that
smells(f’) = smells(x) (from the induction hypothesis on Y') and smells(f) = smells(z) (from
the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the inductive
step, and the theorem. ”

The mistake being made here is that the author incorrectly assumes that P(n + 1) holds.
We assume P(n) holds, which informs us on subsets of F' of size at most n. We have no
guarantee on subsets of size n 4+ 1. In consequence, f or f’ - which are drawn from X
where |X| = n 4+ 1 - may never have been part of the subsets of F' that respect P(n),
and cannot have any assumptions made about them. We therefore have no guarantee that
smells(f’) = smells(z) or smells(f) = smells(z), rendering this proof incorrect.
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Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:
For any BExp b and any initial state o such that o(z) is even, if

(whilebdo z:=x+2,0) || ¢

then ¢’(z) is even. Make sure you state what you induct on, what the base case is and what
the inductive cases are. Show representative cases among the latter. Do not do a proof by
mathematical induction!

Answer:
There are two judgments to that can be the base for our derivation. The first one is as
follows, where (b, o) |} false:

Dy :: (b,o) || false
Dyaise = (whilebdo z :=2+2,0) | o

We can see that by determinism, o stays unchanged, and therefore o’ = o. Therefore, we
can conclude that if o(x) was even before the execution of the command, it will remain even
after in o.

The second judgment we need to consider is the on where (b, o) || true:

D, :: (byo)ytrue D, {(x:=x+2,0) o1 D.:(whilebdoz:=242,01) 0
Do 2 (while bdo x .=z +2,0) |} o’

By the induction hypothesis on Dj, we can conclude that oy = o[z := o(z) + 2]. Since we
know that o(x) is even, we can conclude that oy (z) = o(z) + 2 is also even.

Using this result, we can conclude by the induction hypothesis on D, that ¢’(z) is also even.
Thus, for any BExp b and any initial state o such that o(x) is even, if we run the while
command, then ¢’(z) is even.
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Exercise 2F-4. Language Features, Large-Step [12 points]. We extend IMP with a
notion of integer-valued exceptions (or run-time errors), as in Java, ML or C#. We introduce
a new type T to represent command terminations, which can either be normal or exceptional
(with an exception value n € Z):

T = o “normal termination”
| o excn “exceptional termination”

Note that our previous command rules must be updated to account for exceptions, as in:

(c1,0) b o' (co,0") It

(c1;09,0) |} 0’ excm (c1;09,0)  t

(c1,0) J 0’ excn

seq2

We also introduce three additional commands:

throw e
try ¢; catch x ¢
after ¢; finally ¢,

Give the large-step operational semantics inference rules (using our new judgment) for the
three new commands presented here. You should present six (6) new rules total.

Answer:

Throw:
(e,0) In

(throw e, o) |} 0 exc n

throw

Try:

(c1,0) |} o1 by, (c1,0) o1 excn {(co,01[x :=n]) | 09
(try ¢1 catch x co,0) || 01 (try ¢; catch x co,0) || 09

trys

Finally:

(c1,0) J o1 excny (co,01) | 02
(after ¢ finally co,0) |} 09 exc ny

(cr,o) o1 (c2,01) I 02
(after ¢ finally c2,0) | o9

finally, finally,

(c1,0) | 01 excny  (co,01) | 02 exc ngy

- finall
(after ¢, finally co,0) | 02 exc ngy y3
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Exercise 2F-5. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

Answer:

I do not believe that “IMP with exceptions” is better described using small-step contextual
semantics for two main reasons: I believe large-step to be more clear, and I think large-step
is easier to implement in our OCaml interpreter.

Large-step is more concise: the preconditions and conclusions to a judgment are presented
next to each other. This makes the evaluation of a program crystal clear at the small-step
intermediate calculations are hidden away to reveal the result only. This is particularly useful
to newcomers to IMP, as they may more elegantly understand the relationships between
commands in a program.

Moreover, I find that the translation between large-step operational semantics and OCaml
is fricitonless: indeed, in my personal experience, IMP large-step rules have been extremely
straightforward to implement in OCaml. This makes the creation and implementation of
new language features (such as exceptions) easier when expressed in large-step operational
semantics. I believe this to be a large advantage over small-step.

In conclusion, both my belief in the superior clarity of large-step operational semantics, as
well as my personal experience translating large-step rules into the OCaml interpreter lead
me to reject the claim that ‘it would be more natural to describe “IMP with exceptions”
using small-step contextual semantics’.
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