2 Mathematical Induction

The main flaw of this proof is that it has an assumption saying, for an arbitrary n, Y N'Y’ must be a non-
empty set. BIn other words, by saying “Pick any arbitrary z € Y NY’” it is assumed that there is always
some flower z in both Y and Y’. However, if X has only two elements, i.e. n = 1, such that X = {f, '},
then Y, Y’ and Y NY”’ will be empty. Thus, there is no guaranteed element of = to serve as a common
reference for transitivity of the smell equality. The induction step fails for n = 1, which prevents it from
extending to higher n.

Also, in the base case, while the claim that all singleton sets contain flowers that smell the same is true,
a base case should not be justified solely by referring to the definition of the property itself. Instead, it can
be more rigorously stated as:

(VX eP(F), IX|<1 = (Vf,f'€X, f=f)ANVffeX, [f=f = smells(f)=smells(f))

And thus the property holds for the base case. Here is the proof provided with the underlined false claims:

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F. (The range of
smells is not so important, but we’ll assume that it admits equality.) We’ll also assume that F' is countable.
Let the property P(n) mean that all subsets of F' of size at most n contain flowers that smell the same.

Pn) ¥VX e P(F), |X|<n = (Vf,f' € X, smells(f) = smells(f’))

(the notation | X| denotes the number of elements of X).

One way to formulate the statement to prove is Vn > 1, P(n). We’'ll prove this by induction on n, as
follows:

Base Case: n = 1.

Obviously, all singleton sets of flowers contain flowers that smell the same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n contain flowers that
smell the same. We will prove that the same thing holds for all subsets of size at most n+1. Pick an arbitrary
set X such that |X| =n+ 1. Pick two distinct flowers f, f* € X and let’s show that smells(f) = smells(f’).

Let Y = X\ {f} and Y/ = X \ {f'}. Obviously, Y and Y’ are sets of size at most n, so the in-
duction hypothesis holds for both of them. Pick any arbitrary 2 € Y NY’. Obviously, z # f and z # f.
We have that smells(f) = smells(z) (from the induction hypothesis on Y) and smells(f’) = smells(z)
(from the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the inductive step, and
the theorem.

3 While Induction

!

Lemma 3.1. For any BExp b and any initial state o such that o(x) is even, if, (while b do .= x+2,0) | o
then o'(z) is even.

Proof. Below is a structural proof for the above lemma.
Base Case If (b, 0) || false then the statement x := x + 2 will never be evaluated. And from while-false

inference rule
(b,o) | false
(while b do ¢,0) | o

we know that the next state o’ will be equal to . Therefore, if o(z) is even, then ¢’(z) which is equal to
o(x) is also even.

Induction Hypothesis If (b,0) || true, we will evaluate the expression x := z + 2 indefinitely in this
case. For an arbitrary intermediate state o1 of the while evaluation let’s assume that if o(z) is even and
(while true do z := 2 +2,0) — -+ — ((x := z + 2; ) while true do © := x +2,01) then o1(z) is even. Here
(# := x +2;)* means that = := x + 2 is evaluated k times.

Inductive Step From the above arbitrary state o; to the next state oo we will evaluate z := z + 2
one more time and we will try to prove that = is again even in the next state. From the inference rule of
assignment

(e,0) I n
(x :=e,0) | o[z :=n)]
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we can say that o2(z) = o1(z) + 2 and from the inductive hypothesis we know that o(x) is even. Since, 2
is also even and the summation of two even numbers is also even, we can conclude that oq(z) is also even.
Thus, we proved the above lemma by structural induction. O

4 Language Features, Large-Step

Let’s define the rules for newly added commands,

(throw ¢) To handle the throw case we just need a simple rule that ends with a exceptional termination.

(e,o) In

(throw e, o) | o exc n

(try c¢1 catch = ¢2) In this command we should think about two different cases in which the ¢; terminates
normally and raises an exception. We can add the following rule for the first case,

(c1,0) I o

(try ¢ catch z co,0) || o/

Here if ¢; terminates normally the try command also terminates normally as defined. And for the second
case we can add the following rule,

(c1,0) o’ excn {ca,0[z:=n]) | o”

(try ¢1 catch z co,0) || o

Here, if ¢; raises an exception with value n, the variable z € L is assigned the value n and then c; is executed.

(after c¢; finally c2) In this command we can have three different cases. The first one is that if ¢y
terminates normally then finally command terminates by executing cz. And we can add the following rule
for this case,

(er,0) Lo’ {ca,0")y § o

(after ¢y finally co,0) || o’

The second case is when ¢; raises an exception with value n; and then ¢, ix executed and it terminates
normally. We can add the following rule for this case,

(cr,0) o’ excny {ca,0") | 0

(after ¢; finally co,0) |} 0/ exc ny

Here it will terminate by throwing an exception with the value n; and since ¢y gets executed it will
update the state as well.
The last option is that both ¢; and ¢y throwing errors valued n; and ny respectively. We can add the
following rule for this case,
(c1,0) o’ excny  (ca,0") | 0” exc ng

(after ¢; finally co,0) |} 0/ exc ng

5 Language Features, Analysis

I will argue against the claim that it is more natural to describe “IMP with exceptions” using small-step
contextual semantics. In small-step contextual semantics, for each state of the program, the next state can
be deterministically decided. And even when we have if or while commands we can first evaluate the boolean
expression inside the conditional and then decide what to do next based on that information and we have
reduction rules such as <if true then ¢; else co, 0> — <c1, 0>. However the “nature” of the introduced
exceptions to this language, especially try-catch and after-finally, is non-deterministic. Unlike an if or while
command, where we evaluate a boolean expression to decide the next step, there is no direct way to replicate
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the nondeterministic paths exceptions can take using the same small-step approach. Consequently, it is
difficult to capture this nondeterminism with small-step semantics, suggesting that it may not be the most
natural framework for describing “IMP with exceptions.

Large-step semantics can be simpler to implement because we can deduce the prior step’s outcome
from the final termination result. For instance, if an “after ¢; finally ¢3” command ultimately terminates
exceptionally, we know that ¢; ended exceptionally or both ¢; and ¢z did. Furthermore, the final exception
value tells us whether ¢y terminated normally or also threw an exception, making it straightforward to
reconstruct the overall control flow.
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