12F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 65816630 — enter this when you fill out your peer evaluation via gradescope

Page 3

All subsequent answers should appear after the first page of your submission and may be
shared publicly during peer review.

Exercise 2F-2. Mathematical Induction [5 points|. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

def

P(n) = VX € P(F). |X|<n = (Vf, [€ X. smells(f) = smells(f"))

(the notation | X | denotes the number of elements of X)

One way to formulate the statement to prove is Vn > 1.P(n). We’ll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n+ 1. Pick an arbitrary set X such that |X| = n+1. Pick two distinct flowers
f, f' € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and Y' = X — {f'}.
Obviously Y and Y’ are sets of size at most n so the induction hypothesis holds for both
of them. Pick any arbitrary x € Y NY’. Obviously, x # f and z # f’. We have that
smells(f’) = smells(z) (from the induction hypothesis on Y) and smells(f) = smells(x) (from
the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the inductive
step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

Answer 2F-2 The sentence "Pick any arbitrary x € Y NY’” is wrong. The reason is, for
inductive step in mathematical induction, we need prove P(n) = P(n+ 1) for any n > 0.
However, when n = 1, we have | X | = n+1 = 2. If we choose f, f' € X as above. YNY' = ().
Thus, we cannot pick z € Y NY’. Therefore, the sentence "Pick any arbitrary x € Y NY"”
is wrong.

2

Peer Review ID: 65816630 — enter this when you fill out your peer evaluation via gradescope

2 2F-2 Mathematical Induction
- 0 pts Correct

Peer Review ID: 65816630 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:
For any BExp b and any initial state o such that o(z) is even, if

(whilebdo z:=x+2,0) | o

then o’(z) is even. Make sure you state what you induct on, what the base case is and what
the inductive cases are. Show representative cases among the latter. Do not do a proof by
mathematical induction!

Answer 2F-3 Let B be the set of all BExp.

We wish to show the property

P(o) ¥ Vb e B. (whilebdo z:=z+2,0) | &/ = o’(z) is even
holds for all states o in {0 € X|o(z) is even}.
We do this by well-founded induction on S = {o € X|o(z) is even} where

01 < 0y <= 0o1(x) > 03(x)

for states 01,05 in S. < is well founded as the value of cannot increased indefinitely.

Base case: P(o) is true for (while false do x := x4+ 2,0) || 0/ = o¢'(z) is even, when
o(x) is the largest even number that the computer can hold. (I assume that in this case
(while true do x := x + 2,0) || ¢’ does not exist, because the result cannot be handled by
the computer.)

Inductive Step:

If b is false. We construct the derivation

<b,o>| false
<while bdo z:=z+2,0>|0

using the rule for while-loops which applies when the boolean condition evaluates to false.
In this case, 0’ = 0. Thus o¢'(x) = o(x) is even.
If b is true. We construct the derivation

<boo>|true <z:=z+2;while bdo z:=z+2,0>|0’
<while b do z:=z+2,0>{0’

using the rule for while-loops which applies when the boolean condition evaluates to true.
It also can be written as

<b,o>l|true

<while b do z::z+2,o”>llo’
<while b do z::z+2,o‘>l}o"

where ¢”(z) = o(x) + 2. In our definition ¢” < . If we have P(¢”), then P(0).
By well-founded induction, we conclude Vo € S, P(0), as required.

3

Peer Review ID: 65816630 — enter this when you fill out your peer evaluation via gradescope

3 2F-3 While Induction
- 0 pts Correct

Peer Review ID: 65816630 — enter this when you fill out your peer evaluation via gradescope

Page 7

These constructs are intended to have the standard exception semantics from languages like
Java, C# or OCaml — except that the catch block merely assigns to x, it does not bind it
to a local scope. So unlike Java, our catch does not behave like a let. We thus expect:

x :=0 ;
{ try
if x <= 5 then throw 33 else throw 55
catch x
print x } ;
while true do {
x :=x - 15 ;
print x ;
if x <= 0 then throw (x*2) else skip
¥

to output “33 18 3 -12” and then terminate with an uncaught exception with value -24.
Give the large-step operational semantics inference rules (using our new judgment) for
the three new commands presented here. You should present six (6) new rules total.

Answer 2F-4. throw e command

(e,o) I n

(throw e, o) |} 0 exc n

throw

(c1,0) | o h (c1,0) J o' exen (x:=mn;c,0) |t o
(try ¢y catch x cp,0) |} o caite (try ¢y catch x cp,0) | ¢ Gate
V4 / t / / 1
(c1,0) 0" (co,0") | finallyl (c1,0) J 0’ excen (co,0') | o finally2

(after ¢ finally co,0) |} ¢ (after ¢; finally co,0) || 0” exc n

(c1,0) J 0’ exc ny (c2,0') | 0" exc ny

: finally3
(after ¢; finally co,0) | 0” exc ny sl

Exercise 2F-5. Language Features, Analysis [6 points|. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

5

Peer Review ID: 65816630 — enter this when you fill out your peer evaluation via gradescope

4 2F-4 Language Features, Large Step
- 0 pts Correct

Peer Review ID: 65816630 — enter this when you fill out your peer evaluation via gradescope

Page 9

Answer 2F-5. In my opinion, I disagree with that it would be more natural to de-
scribe“IMP with exceptions” using small-step contextual semantics. Small-step semantics
give more details on the program. However, some details are not necessary for understand
the exceptions. Big-step abstracts away the details of the evaluation but retains the syntac-
tic nature of the result, so that we can know which block of commands cause the exception
rather than go through the details about how the expressions are reduced. Small step con-
textual semantics help build an interpreter because it defines each operation. To analyse a
real program, we cannot follow all the small-step reduction rules step by step. As human,
we cannot retrieve and interpret instructions in gigahertz. What we can do is to understand
how the overall results of the executions are obtained.

Exercise 2C. Language Features, Coding. Download the Homework 2 code pack from
the course web page. Modify hw2.ml so that it implements a complete interpreter for “IMP
with exceptions (and print)”. You may build on your code from Homework 1 (although
the let command is not part of this assignment). Using OCaml’s exception mechanism
to implement IMP exceptions is actually slightly harder than doing it “naturally”; so I
recommend that you just implement the operational semantics rules. The Makefile includes
a “make test” target that you should use (at least) to test your work.
Hint: to check if a termination term is an exception, use syntax like

begin match term with

| Normal -> do_something

| Exceptional(n) -> do_something else using n
end

Modify the file example-imp-command so that it contains a “tricky” terminating IMP
command (presumably involving exceptions) that can be parsed by our IMP test harness
(e.g., “imp < example-imp-command” should not yield a parse error).

Submission. Turn in the formal component of the assignment as a single PDF document
via the gradescope website. Your name and Michigan email address must appear on the
first page of your PDF submission but may not appear anywhere else. Turn in the coding
component of the assignment via the autograder.io website.

6

Peer Review ID: 65816630 — enter this when you fill out your peer evaluation via gradescope

5 2F-5 Language Features, Analysis
- 0 pts Correct

Peer Review ID: 65816630 — enter this when you fill out your peer evaluation via gradescope

Page 11

