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2 Exercise 2F-2. Mathematical Induction [5 points].

Find the flaw in the following inductive proof that “All flowers smell the same”. Please indicate
exactly which sentences are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F. (The
range of smells is not so important, but we’ll assume that it admits equality.) We’ll also assume
that F' is countable. Let the property P(n) mean that all subsets of F' of size at most n contain
flowers that smell the same.

P(n) ¥ vx e P(F). |X|<n = (Vf, f' € X. smells(f) = smells(f"))

(the notation | X| denotes the number of elements of X)

One way to formulate the statement to prove is Vn > 1.P(n). We'll prove this by induction on
n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the same
(by the definition of P(n)).

Induction Step: Let m be arbitrary and assume that all subsets of F' of size at most n con-
tain flowers that smell the same. We will prove that the same thing holds for all subsets of
size at most n + 1. Pick an arbitrary set X such that |X| = n + 1. Pick two distinct flowers
f,f" € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and Y/ = X — {f'}.
Obviously Y and Y’ are sets of size at most n so the induction hypothesis holds for both of them.
Pick any arbitrary € Y NY’. Obviously, z # f and  # f’. We have that smells(f’) = smells(z)
(from the induction hypothesis on Y') and smells(f) = smells(z) (from the induction hypothesis on
Y’). Hence smells(f) = smells(f’), which proves the inductive step, and the theorem.

The assumption of there exists an x € Y NY” such that = # f and x # f’ is not always valid.

In particular, when n = 2, no x can be found. The induction hypothesis does not guarantee
that this set is non-empty.

Since the induction step is incorrect, the proof is not correct.
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3 Exercise 2F-3. While Induction [10 points].
Base case: while false
If the last rule used in D is while false

< b,o > false
<whilebdozx:=x+2,0 >0

We can infer that o’ = 0. Therefore, o’(z) = o(x) is even.
Inductive case: while true
If the last rule used in D is while true

<bo>|true <x:=x+2,0>0" Di:<whilebdox:=x+2,0" >0
< while bdo z:=x+ 2,0 >| o’

Structure of derivations using the rules for assignment

<z,0>lo(x) <2,0> {2
<z+2,0>|o(x)+2

< $i=g+2,0>|olpi=0c(@)+2

Apply the induction hypothesis to the derivations rooted at D;.

We can infer that ¢” = o[z := o(z) + 2]. The induction hypothesis is that if ¢”(x) is even,
o'(z) in D; is even. Based on mathematical property of even number, ¢”(z) is already even since
o(x) is even.

Q.ED
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4 Exercise 2F-4. Language Features, Large-Step [12 points].

Notice that we are using t to represent terminations.

throw e
<eo>n

< throw e, o0 >| ¢ excn

try ¢1 catch x co
<c,0 >0

< try ¢1 catch & cg,0 > o

<c o> excen <z:i=n;c,0 >t
< try ¢; catch x co,0 > t

after ¢; finally co

<ci, o> <eco,0 >t
< after ¢; finally co,0 > t

<cp,o>o excn <eo, 0 > 0"
< after ¢; finally c2,0 >{ 0" exc n

<cp, o> o excny <c2,0 > 0" excng
< after ¢; finally c2,0 > o exc ng

5 Exercise 2F-5. Language Features, Analysis [6 points].

I believe it is simpler and more elegant to describe “IMP with exceptions” using small-step
contextual semantics. For the try command, we must consider if ¢q raises an exception. For the
finally command, both ¢; and ¢y will be evaluated. As a result, large-step semantics involves several
evaluations for states o. For most of the times, it is merely repeating the logic of throw or skip. We
have to use multiple subscripts and superscripts to express and analysis the conditions. It is hard
to read and not informative.

However, in small-step semantic, the evaluations can be done by simply referring to the skip and
throw command in local reduction rules. Even though few more lines for Context and Redex will
be added. It is intuitive and not repetitive. Here, small-step semantic can directly demonstrate the
logics without worrying about the detailed expressions. Therefore, small-step contextual semantics
would be more elegant and simpler for “IMP with exceptions”.

Peer Review ID: 65790759 — enter this when you fill out your peer evaluation via gradescope



4 2F-4 Language Features, Large Step
- 0 pts Correct

Peer Review ID: 65790759 — enter this when you fill out your peer evaluation via gradescope

Page 9



4 Exercise 2F-4. Language Features, Large-Step [12 points].

Notice that we are using t to represent terminations.

throw e
<eo>n

< throw e, o0 >| ¢ excn

try ¢1 catch x co
<c,0 >0

< try ¢1 catch & cg,0 > o

<c o> excen <z:i=n;c,0 >t
< try ¢; catch x co,0 > t

after ¢; finally co

<ci, o> <eco,0 >t
< after ¢; finally co,0 > t

<cp,o>o excn <eo, 0 > 0"
< after ¢; finally c2,0 >{ 0" exc n

<cp, o> o excny <c2,0 > 0" excng
< after ¢; finally c2,0 > o exc ng

5 Exercise 2F-5. Language Features, Analysis [6 points].

I believe it is simpler and more elegant to describe “IMP with exceptions” using small-step
contextual semantics. For the try command, we must consider if ¢q raises an exception. For the
finally command, both ¢; and ¢y will be evaluated. As a result, large-step semantics involves several
evaluations for states o. For most of the times, it is merely repeating the logic of throw or skip. We
have to use multiple subscripts and superscripts to express and analysis the conditions. It is hard
to read and not informative.

However, in small-step semantic, the evaluations can be done by simply referring to the skip and
throw command in local reduction rules. Even though few more lines for Context and Redex will
be added. It is intuitive and not repetitive. Here, small-step semantic can directly demonstrate the
logics without worrying about the detailed expressions. Therefore, small-step contextual semantics
would be more elegant and simpler for “IMP with exceptions”.

Peer Review ID: 65790759 — enter this when you fill out your peer evaluation via gradescope



5 2F-5 Language Features, Analysis
- 0 pts Correct

Peer Review ID: 65790759 — enter this when you fill out your peer evaluation via gradescope

Page 11



