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Exercise 2F-2. Proof: Let F be the set of all flowers and let smells(f) be the smell of
the flower f € F. (The range of smells is not so important, but we’ll assume that it admits
equality.) We’ll also assume that F is countable. Let the property P(n) mean that all
subsets of F' of size at most n contain flowers that smell the same.

def

P(n) =VX € P(F). | X|<n = (Vf, [ € X. smells(f) = smells(f"))

(the notation | X | denotes the number of elements of X)

One way to formulate the statement to prove is Yn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n + 1. Pick an arbitrary set X such that |X| = n 4+ 1. Pick two distinct
flowers f, f’ € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and V' =
X —{f'}. Obviously Y and Y” are sets of size at most n so the induction hypothesis holds
for both of them. Pick any arbitrary z € Y N'Y’. Obviously, x # f and x # f’. We have that
smells(f’) = smells(z) (from the induction hypothesis on Y) and smells(f) = smells(x) (from
the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the inductive
step, and the theorem.

The error stems from the assumption that the highlighted portion will generate any = at
all. At n =2, Y NY’ will result in an empty set since they will each only contain either f
or f’, causing this induction to fail.

Exercise 2F-3.

We will do an induction on b. As for our <, our base case is a single "false” or a constant
"true”, and our inductive case is adding "true” before the other cases (to simulate looping
- it will either terminate with a ”false” in the end, or go on looping indefinitely). This is
well-founded since while the number of ”false”s can increase indefinitely, it can’t decrease
any lower than 0, and thus there are no infinite descending chains.

Base case: b ::= false. The state terminates without even going through the loop once,
and thus z is unchanged. Hence, it will remain even.

Base case: b ::= constant true. The state never terminates. Hence the given if statement
will be false and since false = anything is always true, the entire statement still holds true.

Inductive case: b ::= true then b', where b’ holds true. since we assume the statement
holds true when b = ', we basically only need to prove that x := x + 2 is even when z is
even. Let y = /2, since x is even, y is an integer. Then (z +2)/2 = 2y +2)/2 =y + 1,
and y + 1 is also an integer. Hence x + 2 is even, and the statement is proven by induction.
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Exercise 2F-2. Proof: Let F be the set of all flowers and let smells(f) be the smell of
the flower f € F. (The range of smells is not so important, but we’ll assume that it admits
equality.) We’ll also assume that F is countable. Let the property P(n) mean that all
subsets of F' of size at most n contain flowers that smell the same.

def

P(n) =VX € P(F). | X|<n = (Vf, [ € X. smells(f) = smells(f"))

(the notation | X | denotes the number of elements of X)

One way to formulate the statement to prove is Yn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n + 1. Pick an arbitrary set X such that |X| = n 4+ 1. Pick two distinct
flowers f, f’ € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and V' =
X —{f'}. Obviously Y and Y” are sets of size at most n so the induction hypothesis holds
for both of them. Pick any arbitrary z € Y N'Y’. Obviously, x # f and x # f’. We have that
smells(f’) = smells(z) (from the induction hypothesis on Y) and smells(f) = smells(x) (from
the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the inductive
step, and the theorem.

The error stems from the assumption that the highlighted portion will generate any = at
all. At n =2, Y NY’ will result in an empty set since they will each only contain either f
or f’, causing this induction to fail.

Exercise 2F-3.

We will do an induction on b. As for our <, our base case is a single "false” or a constant
"true”, and our inductive case is adding "true” before the other cases (to simulate looping
- it will either terminate with a ”false” in the end, or go on looping indefinitely). This is
well-founded since while the number of ”false”s can increase indefinitely, it can’t decrease
any lower than 0, and thus there are no infinite descending chains.

Base case: b ::= false. The state terminates without even going through the loop once,
and thus z is unchanged. Hence, it will remain even.

Base case: b ::= constant true. The state never terminates. Hence the given if statement
will be false and since false = anything is always true, the entire statement still holds true.

Inductive case: b ::= true then b', where b’ holds true. since we assume the statement
holds true when b = ', we basically only need to prove that x := x + 2 is even when z is
even. Let y = /2, since x is even, y is an integer. Then (z +2)/2 = 2y +2)/2 =y + 1,
and y + 1 is also an integer. Hence x + 2 is even, and the statement is proven by induction.
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Exercise 2F-4.

Exercise 2F-5. [ am against the claim. The advantage that small-step contextual seman-
tics has is that it is hard to talk about commands whose evaluation does not terminate or are
ill-formed or errornous in natural-style operational semantics. However, with the addition
of exceptions, the need to care about those commands is eliminated, since the exceptions
handling will take care of them. Hence it will be simpler to stick with the natural-style

operational semantics.
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Exercise 2F-4.

Exercise 2F-5. [ am against the claim. The advantage that small-step contextual seman-
tics has is that it is hard to talk about commands whose evaluation does not terminate or are
ill-formed or errornous in natural-style operational semantics. However, with the addition
of exceptions, the need to care about those commands is eliminated, since the exceptions
handling will take care of them. Hence it will be simpler to stick with the natural-style

operational semantics.
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