12F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 65774275 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F'.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

P(n) VX € P(F). | X|<n = (Vf, f € X. smells(f) = smells(f"))
(the notation | X | denotes the number of elements of X)

One way to formulate the statement to prove is Yn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n+ 1. Pick an arbitrary set X such that |X| = n+1. Pick two distinct flowers
f, f' € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and Y' = X — {f'}.
Obviously Y and Y’ are sets of size at most n so the induction hypothesis holds for both
of them. Pick any arbitrary x € Y NY’. Obviously, x # f and = # f’. We have that
smells(f’) = smells(z) (from the induction hypothesis on Y) and smells(f) = smells(z) (from
the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the inductive
step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

Solution:

The sentence “Pick any arbitrary z € Y NY”” is wrong because in the case where n = 2,
Y NY’ = (. That is, there are no elements in Y NY’. This is because one element is
removed to make Y, the other element is removed to Y’, and there are no elements left that
could form the intersection Y NY”’. The smells function cannot be applied to a non-existent
element, so the inductive step for P = 2 is not logically valid.

Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:
For any BExp b and any initial state o such that o(z) is even, if

(whilebdo z:=x+2,0) | o

then ¢’(z) is even. Make sure you state what you induct on, what the base case is and what
the inductive cases are. Show representative cases among the latter. Do not do a proof by
mathematical induction!

2

Peer Review ID: 65774275 — enter this when you fill out your peer evaluation via gradescope

2 2F-2 Mathematical Induction
- 0 pts Correct

Peer Review ID: 65774275 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F'.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

P(n) VX € P(F). | X|<n = (Vf, f € X. smells(f) = smells(f"))
(the notation | X | denotes the number of elements of X)

One way to formulate the statement to prove is Yn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n+ 1. Pick an arbitrary set X such that |X| = n+1. Pick two distinct flowers
f, f' € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and Y' = X — {f'}.
Obviously Y and Y’ are sets of size at most n so the induction hypothesis holds for both
of them. Pick any arbitrary x € Y NY’. Obviously, x # f and = # f’. We have that
smells(f’) = smells(z) (from the induction hypothesis on Y) and smells(f) = smells(z) (from
the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the inductive
step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

Solution:

The sentence “Pick any arbitrary z € Y NY”” is wrong because in the case where n = 2,
Y NY’ = (. That is, there are no elements in Y NY’. This is because one element is
removed to make Y, the other element is removed to Y’, and there are no elements left that
could form the intersection Y NY”’. The smells function cannot be applied to a non-existent
element, so the inductive step for P = 2 is not logically valid.

Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:
For any BExp b and any initial state o such that o(z) is even, if

(whilebdo z:=x+2,0) | o

then ¢’(z) is even. Make sure you state what you induct on, what the base case is and what
the inductive cases are. Show representative cases among the latter. Do not do a proof by
mathematical induction!

2

Peer Review ID: 65774275 — enter this when you fill out your peer evaluation via gradescope

Solution:

Before proceeding with the proof, we introduce the following lemma:
Lemma: Ifn € Z and n is even, then n + 2 is also even.

Proof. Let n € Z be an even integer. By definition of an even integer, there must exist
some k € Z such that
n = 2k.
Adding 2 to n, we have

n+2=2k+2=2(k+1).

By definition of an even integer, this means that n + 2 is also even (since n + 2 is equal
to 2q where ¢ =k + 1). O

We now continue with the original proof. We wish to prove that for any Bexp b and any
initial state o such that o(x) is even, if

(whilebdo z :=x+2,0) | o

then o’(z) is even. The proof proceeds by induction on the structure of the derivation of
this while command. By inversion, there are only two rules that could have been applied
to this while command: the rule for while true or the rule for while false. In the base
case, the last rule that was used was the rule for while false. Specifically, this means the
overall derivation D of the while command is of the form

Dy :: (b,o) || false
(whilebdoz:=x+2,0) o

where D; is the derivation of the evaluation of b in state ¢. In this case, the initial state
o and the final state o’ are both o, so 0 = ¢’. This implies that o(z) = o'(x), so if = was
even in the state before the while command, it must still be even in the state after the
while command.

In the inductive step, we assume that for all sub-derivations of commands of the form
(while bdo z :=x + 2,0) | ¢, if o(x) is even, then o'(z) is also even. There is only one
inductive case to consider: the last rule that was used was the one for while true (as we
already used the rule for while false in the base case, and there are no other rules for
while). Specifically, this means the overall derivation D of this while command is of the
form

D, ::(byo) y true Dy (z:=x+2,0) 0y D;s:(whilebdoz:=x+2,01) {0
(whilebdoz:=xz+2,0) o

3

Peer Review ID: 65774275 — enter this when you fill out your peer evaluation via gradescope

where D; is the derivation of the evaluation of b in state o to produce true, D, is the
derivation of the evaluation of x := x + 2 in state ¢’ to produce the state o/, and D3 is the
derivation of the evaluation of while b do x := z + 2 in state o; to produce the state o’.
By definition of the rules for arithmetic expression evaluation and assignment, we know that
o1(z) = o(z) + 2. By the lemma proved in the beginning of this problem, we know that
o1(x) must be even. Since o;(x) is even, we apply the inductive hypothesis on D3 to derive
that o'(x) is also even. Thus, in the while true case, if o(x) is even, then o’(x) is also even.

We have shown that in all possible derivations of the command (while b do z := x +
2,0) | o', if o(z) is even, then o'(z) is also even. This concludes the proof. O

Exercise 2F-4. Language Features, Large-Step [12 points]. We extend IMP with a
notion of integer-valued exceptions (or run-time errors), as in Java, ML or C#. We introduce
a new type T to represent command terminations, which can either be normal or exceptional
(with an exception value n € Z):

T = o “normal termination”
| o excn “exceptional termination”

We use t to range over possible terminations 7. We then redefine our operational semantics
judgment:

(c,o) § T

The interpretation of
(c,o) || o' excn

is that command ¢ terminated abruptly by throwing an exception with value n € Z at a
point in ¢’s execution when the state was ¢’. We only model one type of exception, but
every exception has an integer “argument” n (or “payload” or “value”) that is set when the
exception is thrown and available when the exception is caught.

Note that our previous command rules must be updated to account for exceptions, as in:

(c1,0) o’ (co,0")y |t

(c1;09,0) |} 0’ excm (c1;c9,0) It

(c1,0) 0’ excn

seq?2

We also introduce three additional commands:

throw e
try ¢; catch z ¢
after ¢; finally ¢,

e The throw e command raises an exception with argument e.

e The try command executes ¢1. If ¢; terminates normally (i.e., without an uncaught
exception), the try command also terminates normally. If ¢; raises an exception with
value e, the variable x € L is assigned the value e and then ¢, is executed.

4

Peer Review ID: 65774275 — enter this when you fill out your peer evaluation via gradescope

3 2F-3 While Induction
- 0 pts Correct

Peer Review ID: 65774275 — enter this when you fill out your peer evaluation via gradescope

Page 9

where D; is the derivation of the evaluation of b in state o to produce true, D, is the
derivation of the evaluation of x := x + 2 in state ¢’ to produce the state o/, and D3 is the
derivation of the evaluation of while b do x := z + 2 in state o; to produce the state o’.
By definition of the rules for arithmetic expression evaluation and assignment, we know that
o1(z) = o(z) + 2. By the lemma proved in the beginning of this problem, we know that
o1(x) must be even. Since o;(x) is even, we apply the inductive hypothesis on D3 to derive
that o'(x) is also even. Thus, in the while true case, if o(x) is even, then o’(x) is also even.

We have shown that in all possible derivations of the command (while b do z := x +
2,0) | o', if o(z) is even, then o'(z) is also even. This concludes the proof. O

Exercise 2F-4. Language Features, Large-Step [12 points]. We extend IMP with a
notion of integer-valued exceptions (or run-time errors), as in Java, ML or C#. We introduce
a new type T to represent command terminations, which can either be normal or exceptional
(with an exception value n € Z):

T = o “normal termination”
| o excn “exceptional termination”

We use t to range over possible terminations 7. We then redefine our operational semantics
judgment:

(c,o) § T

The interpretation of
(c,o) || o' excn

is that command ¢ terminated abruptly by throwing an exception with value n € Z at a
point in ¢’s execution when the state was ¢’. We only model one type of exception, but
every exception has an integer “argument” n (or “payload” or “value”) that is set when the
exception is thrown and available when the exception is caught.

Note that our previous command rules must be updated to account for exceptions, as in:

(c1,0) o’ (co,0")y |t

(c1;09,0) |} 0’ excm (c1;c9,0) It

(c1,0) 0’ excn

seq?2

We also introduce three additional commands:

throw e
try ¢; catch z ¢
after ¢; finally ¢,

e The throw e command raises an exception with argument e.

e The try command executes ¢1. If ¢; terminates normally (i.e., without an uncaught
exception), the try command also terminates normally. If ¢; raises an exception with
value e, the variable x € L is assigned the value e and then ¢, is executed.

4

Peer Review ID: 65774275 — enter this when you fill out your peer evaluation via gradescope

e The finally command executes c¢;. If ¢; terminates normally, the finally command ter-
minates by executing co. If instead c¢; raises an exception with value ey, then ¢y is
executed:

— If ¢o terminates normally, the finally command terminates by throwing an excep-
tion with value e;. (That is, the original exception e; is re-thrown at the end of
the finally block, as in Java.)

— If ¢5 throws an exception with value ey, the finally command terminates by throw-
ing an exception with value e;. (That is, the new exception ey overrides the
original exception e;, also as in Java.)

These constructs are intended to have the standard exception semantics from languages like
Java, C# or OCaml — except that the catch block merely assigns to z, it does not bind it
to a local scope. So unlike Java, our catch does not behave like a let. We thus expect:

x =0 ;
{ try
if x <= 5 then throw 33 else throw 55
catch x
print x } ;
while true do {
x :=x — 15 ;
print x ;
if x <= 0 then throw (x*2) else skip
}

to output “33 18 3 -12” and then terminate with an uncaught exception with value -24.
Give the large-step operational semantics inference rules (using our new judgment) for
the three new commands presented here. You should present six (6) new rules total.

Solution:

The 6 new rules are below:

(e,o) I n

(throw e,0) || 0 exc n

(c1,0) | o

(try ¢1 catch x ¢p,0) |} o

e, 0) do'exen @e=no)laleg=n] (e @=mna]) i
(try ¢y catch x co,0) | ¢

5

Peer Review ID: 65774275 — enter this when you fill out your peer evaluation via gradescope

(c1,0) o' (cg,0') 2t
(after c; finally co,0) || ¢

(cr,0) | 0’ excny (co,0") |} 0"

(after ¢; finally cp,0) | 0” exc ng

(c1,0) | 0’ exc ny (co,0') || 0" exc ny

(after ¢y finally co,0) |} 0” exc ny

Exercise 2F-4. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

Solution:

It would not be more natural to describe “IMP with exceptions” using small-step seman-
tics. The main reason for this is that the big-step semantics rules offer clearer descriptions
of how try catch and after finally commands work. For example, in the case of after finally,
we could write the following local reduction rules (assuming we define the redexes and con-
texts appropriately): (throw n;c,0) — (throw n, o), (after skip finally ¢,0) — (¢, o), and
(after throw n finally ¢) — (c;throw n, o). Here we define throw to be a terminating com-
mand like skip, but (throw n, o) results in an exceptional termination whereas (skip, o) re-
sults in a normal termination. The second rule in the list states that if we reached a normal
termination in the first sub-command, then we simply execute the command c after the
finally keyword. The third rule states that if we reached an exceptional termination in the
first sub-command, then we execute ¢ and afterward terminate with the same value as the
first sub-command (as long as ¢ evaluates normally; otherwise, ¢’s termination will be the
final termination). The meanings of these after finally rules may not be immediately clear
from their definitions; one has to reason about how sequences of commands reduce down
to skip or throw n to understand what these rules mean. In contrast, terminations of en-
tire sub-commands for after finally are explicitly labeled in the rules, allowing one to more
clearly understand what after finally commands truly do. For instance, in the big-step rule
for after ¢; finally ¢, where both ¢; and ¢y produce exceptional terminations, one can see the
evaluation of each entire sub-command in the premises and which termination is “selected”
as the final termination. The ability to see these terminations directly in the rule itself
permits a more natural interpretation that more accurately represents the English definition
of after finally.

We can illustrate this conclusion more generally by also reasoning about try catch local
reduction rules as well. We could define local reduction rules for try skip and try throw n

6

Peer Review ID: 65774275 — enter this when you fill out your peer evaluation via gradescope

4 2F-4 Language Features, Large Step
- 0 pts Correct

Peer Review ID: 65774275 — enter this when you fill out your peer evaluation via gradescope

Page 13

(c1,0) o' (cg,0') 2t
(after c; finally co,0) || ¢

(cr,0) | 0’ excny (co,0") |} 0"

(after ¢; finally cp,0) | 0” exc ng

(c1,0) | 0’ exc ny (co,0') || 0" exc ny

(after ¢y finally co,0) |} 0” exc ny

Exercise 2F-4. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

Solution:

It would not be more natural to describe “IMP with exceptions” using small-step seman-
tics. The main reason for this is that the big-step semantics rules offer clearer descriptions
of how try catch and after finally commands work. For example, in the case of after finally,
we could write the following local reduction rules (assuming we define the redexes and con-
texts appropriately): (throw n;c,0) — (throw n, o), (after skip finally ¢,0) — (¢, o), and
(after throw n finally ¢) — (c;throw n, o). Here we define throw to be a terminating com-
mand like skip, but (throw n, o) results in an exceptional termination whereas (skip, o) re-
sults in a normal termination. The second rule in the list states that if we reached a normal
termination in the first sub-command, then we simply execute the command c after the
finally keyword. The third rule states that if we reached an exceptional termination in the
first sub-command, then we execute ¢ and afterward terminate with the same value as the
first sub-command (as long as ¢ evaluates normally; otherwise, ¢’s termination will be the
final termination). The meanings of these after finally rules may not be immediately clear
from their definitions; one has to reason about how sequences of commands reduce down
to skip or throw n to understand what these rules mean. In contrast, terminations of en-
tire sub-commands for after finally are explicitly labeled in the rules, allowing one to more
clearly understand what after finally commands truly do. For instance, in the big-step rule
for after ¢; finally ¢, where both ¢; and ¢y produce exceptional terminations, one can see the
evaluation of each entire sub-command in the premises and which termination is “selected”
as the final termination. The ability to see these terminations directly in the rule itself
permits a more natural interpretation that more accurately represents the English definition
of after finally.

We can illustrate this conclusion more generally by also reasoning about try catch local
reduction rules as well. We could define local reduction rules for try skip and try throw n

6

Peer Review ID: 65774275 — enter this when you fill out your peer evaluation via gradescope

similar to the ones above for after skip and after throw n, but these rules would fail to il-
lustrate the “bigger picture” of the core idea that the termination of try catch depends on
the termination of the entire first sub-command. Again, one would need to reason about
the fact that the first sub-command evaluates to either skip or throw n to understand what
these local reduction rules mean. With big-step semantics, the evaluation of the entire first
sub-command is built into the premises of the try catch rules. For this reason, big-step se-
mantics more accurately represents the true meaning of such commands and is hence more
natural to use for defining exceptions than small-step semantics.

Exercise 2C. Language Features, Coding. Download the Homework 2 code pack from
the course web page. Modify hw2.ml so that it implements a complete interpreter for “IMP
with exceptions (and print)”. You may build on your code from Homework 1 (although
the let command is not part of this assignment). Using OCaml’s exception mechanism
to implement IMP exceptions is actually slightly harder than doing it “naturally”, so I
recommend that you just implement the operational semantics rules. The Makefile includes
a “make test” target that you should use (at least) to test your work.

Hint: to check if a termination term is an exception, use syntax like

begin match term with

| Normal -> do_something

| Exceptional(n) -> do_something_else using n
end

Modify the file example-imp-command so that it contains a “tricky” terminating IMP
command (presumably involving exceptions) that can be parsed by our IMP test harness
(e.g., “imp < example-imp-command” should not yield a parse error).

Submission. Turn in the formal component of the assignment as a single PDF document
via the gradescope website. Your name and Michigan email address must appear on the
first page of your PDF submission but may not appear anywhere else. Turn in the coding
component of the assignment via the autograder.io website.

7

Peer Review ID: 65774275 — enter this when you fill out your peer evaluation via gradescope

5 2F-5 Language Features, Analysis
- 0 pts Correct

Peer Review ID: 65774275 — enter this when you fill out your peer evaluation via gradescope

Page 16

