Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

P(n) € VX € P(F). |X|<n = (Vf, [€ X. smells(f) = smells(f"))

(the notation |X| denotes the number of elements of X)

One way to formulate the statement to prove is Vn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of I’ of size at most
n contain flowers that smell the same. We will prove that the same thing holds for all
subsets of size at most n + 1. Pick an arbitrary set X such that |X| = n + 1. Pick two
distinet flowers f, f' € X and let’s show that smells(f) = smells(f"). Let Y = X — {f} and
Y’ =X — {f'}. Obviously Y and Y’ are sets of size at most n so the induction hypothesis
holds for both of them. Pick any arbitrary x € Y N'Y”. Obviously, z # f and z # f’. We have
that smells(f") = smells(z) (from the induction hypothesis on Y') and smells(f) = smells(z)
(from the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the
inductive step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

This proof is incorrect because it assumes that Y NY” is not empty. For example, if we
assume the set X = {f, f'}, then Y NY’ is empty and there is no we can choose from
Y NY’. Therefore, the rest of the proof is invalid because we do not have an x that satisfies

z# fand x # f.

Peer Review ID: 306412062 — enter this when you fill out your peer evaluation via gradescope

Questions assigned to the following page: 3 and 4

Peer Review ID: 306412062 — enter this when you fill out your peer evaluation via gradescope

Exercise 2F-3. While Induction [10 points].
Using structural induction, we can prove that for any BExp b and any initial state o such
that o(z) is even, if
(whilebdox: =z +2,0) | o

then o’(x) is even.

Base Case: b is false. In this case, o remains unchanged. Therefore, o(x) = o’(z). Since
o(x) is originally even, o'(x) is even as well.

Inductive Step: b is true. If b is true, then the while loop runs at least once. Let us define
a 0" representing the state after the loop has been run once. In this case, o”(x) = o(z) + 2.
As our inductive hypothesis, let us assume that if ¢”(z) is even and

(whilebdo =z +2,0") | o

then o'(z) is even. Since ¢”(z) is even and o(x) = o”(z) — 2, we know that o(z) must be
even as well. Based on our inductive hypothesis, we can therefore conclude that

(whilebdo z:=z+2,0) || o

results in ¢o’(z) being even. We have proved the inductive step, and the statement.

Exercise 2F-4. Language Features, Large-Step [12 points].
The throw e command evaluates the argument e and raises an exception with the evaluated
n:

(e,0) I n

(throw e, o) || 0 exc n

The try command requires two rules. If ¢; terminates normally, the try command also
terminates normally:

<cl7 O'> ‘U (T'

(try ¢ catch c3,0) |} o

On the other hand, if ¢; raises an exception with value e, x is assigned the value e and ¢5 is
executed:

(cr,0) 0’ exc e (e, 0x:=c¢]) |t
(try ¢; catch © ¢o,0)) ¢

Peer Review ID: 306412062 — enter this when you fill out your peer evaluation via gradescope

Questions assigned to the following page: 4 and 5

Peer Review ID: 306412062 — enter this when you fill out your peer evaluation via gradescope

The finally command requires three rules. If ¢; terminates normally, the command ter-
minates by executing co:

(er,o) o {ea,0") It
(after ¢; finally co,0) | ¢

If ¢; raises an exception e; and ¢y terminates normally, the command terminates by
throwing an exception with e;:

(c1,0) J o’ exce; (cg,0') 0"

(after ¢; finally co,0) || 0” exc e;

Finally, if co also throws an exception e;, the command terminates by throwing an ex-
ception with es:

(cr1,0) J 0’ excer (co,0') | 0" exc eq

(after ¢; finally cq,0) |} 0” exc es

Exercise 2F-4. Language Features, Analysis [6 points].

When describing ”"IMP with exceptions”, it would be more suitable to use small-step con-
textual semantics. With large-step contextual semantics, the evaluation of expressions omits
intermediate steps and simply determines if an exception is thrown. As a result, it is unsuit-
able for identifying specific steps in which exceptions may occur, particularly in instances
involving loops or conditions. Small-step semantics are more elegant as they model the
execution steps sequentially and can explicitly identify locations in which exceptions stem
from. From a real-life standpoint, the capabilities of small-step semantics make it much more
appropriate method for capturing how and when exceptions occur.

Peer Review ID: 306412062 — enter this when you fill out your peer evaluation via gradescope

