12F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 65784694 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F'.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

P(n) VX € P(F). | X|<n = (Vf, f € X. smells(f) = smells(f"))
(the notation | X| denotes the number of elements of X)

One way to formulate the statement to prove is Yn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most
n contain flowers that smell the same. We will prove that the same thing holds for all
subsets of size at most n + 1. Pick an arbitrary set X such that |X| = n + 1. Pick two
distinct flowers f, f* € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and
Y'= X —{f'}. Obviously Y and Y’ are sets of size at most n so the induction hypothesis
holds for both of them. Pick any arbitrary z € Y N Y. Obviously, z # f and x # f’. We have
that smells(f") = smells(z) (from the induction hypothesis on Y') and smells(f) = smells(z)
(from the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the
inductive step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

The highlighted sentences are incorrect because we haven’t shown that x exists. If n+1=2,
then Y and Y’ are both of size 1 with f being in Y and {’ being in Y’ so the intersection of
Y and Y’ is empty which means no such x exists, violating the proof.

Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:
For any BExp b and any initial state o such that o(z) is even, if

(whilebdo z =z +2,0) | o

then ¢’(z) is even. Make sure you state what you induct on, what the base case is and what
the inductive cases are. Show representative cases among the latter. Do not do a proof by
mathematical induction!

We do this using induction on the derivation. Our base case is

(b,0) | false
(while b do x:=x+2,0) |} o

2

Peer Review ID: 65784694 — enter this when you fill out your peer evaluation via gradescope

2 2F-2 Mathematical Induction
- 0 pts Correct

Peer Review ID: 65784694 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F'.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

P(n) VX € P(F). | X|<n = (Vf, f € X. smells(f) = smells(f"))
(the notation | X| denotes the number of elements of X)

One way to formulate the statement to prove is Yn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most
n contain flowers that smell the same. We will prove that the same thing holds for all
subsets of size at most n + 1. Pick an arbitrary set X such that |X| = n + 1. Pick two
distinct flowers f, f* € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and
Y'= X —{f'}. Obviously Y and Y’ are sets of size at most n so the induction hypothesis
holds for both of them. Pick any arbitrary z € Y N Y. Obviously, z # f and x # f’. We have
that smells(f") = smells(z) (from the induction hypothesis on Y') and smells(f) = smells(z)
(from the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the
inductive step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

The highlighted sentences are incorrect because we haven’t shown that x exists. If n+1=2,
then Y and Y’ are both of size 1 with f being in Y and {’ being in Y’ so the intersection of
Y and Y’ is empty which means no such x exists, violating the proof.

Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:
For any BExp b and any initial state o such that o(z) is even, if

(whilebdo z =z +2,0) | o

then ¢’(z) is even. Make sure you state what you induct on, what the base case is and what
the inductive cases are. Show representative cases among the latter. Do not do a proof by
mathematical induction!

We do this using induction on the derivation. Our base case is

(b,0) | false
(while b do x:=x+2,0) |} o

2

Peer Review ID: 65784694 — enter this when you fill out your peer evaluation via gradescope

In which case the state does not change so if o(x) was originally even, it remains even.

By inversion, these are the only two cases we have to consider, as it does not matter if
b is an equality check, less than or equal to, conjuction, disjunction, etc. All that matters is
the resulting evaluation of b to either True or False. If b is False then we have reached the
base case and if B is True then we have the following induction step:

Dy (byo) Y true Dy (x:=x+2,0) 01 Ds:: (whileb doxi=x+2,01) | ¢
D (while b do x:=x+42,0) | ¢’

By induction hypothesis on D3 we know that in state o, x is given to be even. Adding 2
to an even number in Dy means the resulting number is even, thus ¢’(x) is also even. This
means that in every execution of the while loop, if x starts off as an even number, it will end
as an even number. Similarly, if we reach the base case, and x is an even number, it will
remain an even number. If b never evaluates to False and we don’t reach the base case, then
the program will continue to run and we will never reach state ¢’ in the original expression
(the while loop runs forever). This means it won’t make sense to evaluate if x is even or odd
in o’ unless we reach the base call of b=False allowing the program to terminate. Thus, if x
is an even number prior to running the while loop, it will remain an even number. []

Exercise 2F-4. Language Features, Large-Step [12 points]. We extend IMP with a
notion of integer-valued exceptions (or run-time errors), as in Java, ML or C#. We introduce
a new type T to represent command terminations, which can either be normal or exceptional
(with an exception value n € Z):

T »= ¢ “normal termination”
| o excn “exceptional termination”

We use t to range over possible terminations 7. We then redefine our operational semantics
judgment:
(c,o) § T
The interpretation of
(c,o0) | 0’ excn

is that command ¢ terminated abruptly by throwing an exception with value n € Z at a
point in ¢’s execution when the state was ¢’. We only model one type of exception, but
every exception has an integer “argument” n (or “payload” or “value”) that is set when the
exception is thrown and available when the exception is caught.

Note that our previous command rules must be updated to account for exceptions, as in:

sl (c1,0) o' (co,0') It
(c1;09,0) | 0’ excm (c1;09,0) It

(c1,0) J 0’ excn

seq2

We also introduce three additional commands:

throw e
try ¢; catch x ¢
after ¢; finally ¢,

3

Peer Review ID: 65784694 — enter this when you fill out your peer evaluation via gradescope

3 2F-3 While Induction
- 0 pts Correct

Peer Review ID: 65784694 — enter this when you fill out your peer evaluation via gradescope

Page 8

e The throw e command raises an exception with argument e.

e The try command executes c¢;. If ¢; terminates normally (i.e., without an uncaught
exception), the try command also terminates normally. If ¢; raises an exception with
value e, the variable x € L is assigned the value e and then c; is executed.

e The finally command executes c¢;. If ¢; terminates normally, the finally command ter-
minates by executing co. If instead c¢; raises an exception with value ey, then ¢y is
executed:

— If ¢5 terminates normally, the finally command terminates by throwing an excep-
tion with value e;. (That is, the original exception e; is re-thrown at the end of
the finally block, as in Java.)

— If ¢; throws an exception with value es, the finally command terminates by throw-
ing an exception with value es. (That is, the new exception ey overrides the
original exception ey, also as in Java.)

These constructs are intended to have the standard exception semantics from languages like
Java, C# or OCaml — except that the catch block merely assigns to z, it does not bind it
to a local scope. So unlike Java, our catch does not behave like a let. We thus expect:

x :=0 ;
{ try
if x <= 5 then throw 33 else throw 55
catch x
print x } ;
while true do {
x :=x - 15 ;
print x ;
if x <= 0 then throw (x*2) else skip
}

to output “33 18 3 -12” and then terminate with an uncaught exception with value -24.
Give the large-step operational semantics inference rules (using our new judgment) for
the three new commands presented here. You should present six (6) new rules total.

The 6 rules needs to make IMP with exceptions work are the following:

(e,o) I n

(throw e, o) |} 0 exc n

throw

<Cl7 0) ‘U’ OJ tryl <Cla 0) ‘U’ OJ excn <C27 OJ[':E = n]) lL t tl’y2
(try ¢; catch x ¢o,0) | o (try ¢; catch x co,0) |} t
, o {cp,0’) |t cr,o) o’ exen {(cy,0") | o”
e0) § (e, 07) 4 fterl ev0) 4 (e, 0) 4 after2

(after c; finally cp,0) |} ¢ a (after c; finally cp,0) |} 0” exc n

4

Peer Review ID: 65784694 — enter this when you fill out your peer evaluation via gradescope

(c1,0) | 0’ exc ny (co,0") || 0" exc ny

(after c; finally ¢y, 0) |} 0” exc ny after3

Exercise 2F-4. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

It would not be more natural to describe IMP with exceptions in small-step semantics.
Small-step semantics are well suited for tasks that are very procedural as a sequence of op-
erations such as while loops. With exceptions, we often have to handle the execution of the
program based on various conditions. Take for example the after finally command. There are
three distinct paths that we can take as seen in the large-step operations presented above. To
do this in small-step semantics would require us to execute an operation such as c1, analyze
the termination state of cl, if its an exception then run c¢2, analyze the termination state of
¢2, and then return an exception from either c1 or c2 or the state after c1 executed normally.
These are easy to convey in large-step semantics since we can easily depict the various ways
each of these commands return but in small-step semantics, we would need many reduction
rules would to represent all of the different ways that each of the commands can return to
allow for redexes to be replaced in a single step.

Exercise 2C. Language Features, Coding. Download the Homework 2 code pack from
the course web page. Modify hw2.ml so that it implements a complete interpreter for “IMP
with exceptions (and print)”. You may build on your code from Homework 1 (although
the let command is not part of this assignment). Using OCaml’s exception mechanism
to implement IMP exceptions is actually slightly harder than doing it “naturally”, so I
recommend that you just implement the operational semantics rules. The Makefile includes
a “make test” target that you should use (at least) to test your work.

Hint: to check if a termination term is an exception, use syntax like

begin match term with

| Normal -> do_something

| Exceptional(n) -> do_something else using n
end

Modify the file example-imp-command so that it contains a “tricky” terminating IMP
command (presumably involving exceptions) that can be parsed by our IMP test harness
(e.g., “imp < example-imp-command” should not yield a parse error).

Submitted to Autograder :)

5

Peer Review ID: 65784694 — enter this when you fill out your peer evaluation via gradescope

4 2F-4 Language Features, Large Step
- 0 pts Correct

Peer Review ID: 65784694 — enter this when you fill out your peer evaluation via gradescope

Page 11

(c1,0) | 0’ exc ny (co,0") || 0" exc ny

(after c; finally ¢y, 0) |} 0” exc ny after3

Exercise 2F-4. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

It would not be more natural to describe IMP with exceptions in small-step semantics.
Small-step semantics are well suited for tasks that are very procedural as a sequence of op-
erations such as while loops. With exceptions, we often have to handle the execution of the
program based on various conditions. Take for example the after finally command. There are
three distinct paths that we can take as seen in the large-step operations presented above. To
do this in small-step semantics would require us to execute an operation such as c1, analyze
the termination state of cl, if its an exception then run c¢2, analyze the termination state of
¢2, and then return an exception from either c1 or c2 or the state after c1 executed normally.
These are easy to convey in large-step semantics since we can easily depict the various ways
each of these commands return but in small-step semantics, we would need many reduction
rules would to represent all of the different ways that each of the commands can return to
allow for redexes to be replaced in a single step.

Exercise 2C. Language Features, Coding. Download the Homework 2 code pack from
the course web page. Modify hw2.ml so that it implements a complete interpreter for “IMP
with exceptions (and print)”. You may build on your code from Homework 1 (although
the let command is not part of this assignment). Using OCaml’s exception mechanism
to implement IMP exceptions is actually slightly harder than doing it “naturally”, so I
recommend that you just implement the operational semantics rules. The Makefile includes
a “make test” target that you should use (at least) to test your work.

Hint: to check if a termination term is an exception, use syntax like

begin match term with

| Normal -> do_something

| Exceptional(n) -> do_something else using n
end

Modify the file example-imp-command so that it contains a “tricky” terminating IMP
command (presumably involving exceptions) that can be parsed by our IMP test harness
(e.g., “imp < example-imp-command” should not yield a parse error).

Submitted to Autograder :)

5

Peer Review ID: 65784694 — enter this when you fill out your peer evaluation via gradescope

5 2F-5 Language Features, Analysis
- 0 pts Correct

Peer Review ID: 65784694 — enter this when you fill out your peer evaluation via gradescope

Page 13

