12F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 65783874 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F'.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

def

P(n) =VX e P(F). | X|<n = (Vf, f' € X. smells(f) = smells(f))

(the notation | X | denotes the number of elements of X)

One way to formulate the statement to prove is Yn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n + 1. Pick an arbitrary set X such that |X| = n 4+ 1. Pick two distinct
flowers f, f' € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and Y’ =
X —{f'}. Obviously Y and Y” are sets of size at most n so the induction hypothesis holds
for both of them. Pick any arbitrary z € Y NY’. Obviously, z # f and x # f’. We have that
smells(f’) = smells(x) (from the induction hypothesis on Y') and smells(f) = smells(z) (from
the induction hypothesis on Y’). Hence smells(f) = smells("), which proves the inductive
step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

Answer The answer is that the inductive step is ill-defined. It is necessary, for n = 2, to
have Y and Y such that the intersection of Y NY” is empty; there are no items in there for
x to refer to, and a set of 0 items is below our base case and as such has an indeterminate
smell. With an invalid inductive step, this proof does not work.

Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:
For any BExp b and any initial state o such that o(z) is even, if

(whilebdo z:=x+2,0) | o

then ¢’(z) is even. Make sure you state what you induct on, what the base case is and what
the inductive cases are. Show representative cases among the latter. Do not do a proof by
mathematical induction!

2

Peer Review ID: 65783874 — enter this when you fill out your peer evaluation via gradescope

2 2F-2 Mathematical Induction
- 0 pts Correct

Peer Review ID: 65783874 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F'.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

def

P(n) =VX e P(F). | X|<n = (Vf, f' € X. smells(f) = smells(f))

(the notation | X | denotes the number of elements of X)

One way to formulate the statement to prove is Yn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n + 1. Pick an arbitrary set X such that |X| = n 4+ 1. Pick two distinct
flowers f, f' € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and Y’ =
X —{f'}. Obviously Y and Y” are sets of size at most n so the induction hypothesis holds
for both of them. Pick any arbitrary z € Y NY’. Obviously, z # f and x # f’. We have that
smells(f’) = smells(x) (from the induction hypothesis on Y') and smells(f) = smells(z) (from
the induction hypothesis on Y’). Hence smells(f) = smells("), which proves the inductive
step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

Answer The answer is that the inductive step is ill-defined. It is necessary, for n = 2, to
have Y and Y such that the intersection of Y NY” is empty; there are no items in there for
x to refer to, and a set of 0 items is below our base case and as such has an indeterminate
smell. With an invalid inductive step, this proof does not work.

Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:
For any BExp b and any initial state o such that o(z) is even, if

(whilebdo z:=x+2,0) | o

then ¢’(z) is even. Make sure you state what you induct on, what the base case is and what
the inductive cases are. Show representative cases among the latter. Do not do a proof by
mathematical induction!

2

Peer Review ID: 65783874 — enter this when you fill out your peer evaluation via gradescope

Answer This proof cannot be done with mathematical induction on x, as there is no
minimal base case with integers. Instead, I use structural induction on number of loops of
the "while” command. The substructures of this command are each loop: how the command
behaves when the Bexp b is true, and when it is false. Let us define one base case, representing
the break case of the while loop, causing the command to produce a ¢’. This is case b ==
false; if this is the case, then the while command’s subcommands do not run. o == ¢’; since
o(x) is even, o'(z) is the same and is even as well.

The inductive cases are each substructure of the while loop; the number of times b is true
and cl (x := x + 2) is executed. If b == true is the case, then the command x := x +
2 executes. We know that for all x if x is even, x + 2 is even (as per Piazza, we are not
required to prove this). When the command executes, we transition from a state o where x
is even to a state o’ where x is even. These are the only two possible states for iterations of
the while loop.

At this point, we apply induction over the while loops. If o(x) is even, and x := x + 2
executes n times, o’(x) will be even as well. If the loop executes again, a n+1th time, o'(z)
will become ¢”(z) and is guaranteed to be even as well. By the inductive hypothesis, this is
true for any number of substructure iterations; both b == false and b == true evaluate to
o'(z) as even. Thus, for any initial state where o(x) is even, if the while command is run
and evaluates to a subsequent o', o’(z) is even.

Exercise 2F-4. Language Features, Large-Step [12 points]. We extend IMP with a
notion of integer-valued exceptions (or run-time errors), as in Java, ML or C#. We introduce
a new type T to represent command terminations, which can either be normal or exceptional
(with an exception value n € Z):

T = o “normal termination”
| o excn “exceptional termination”

We use t to range over possible terminations 7. We then redefine our operational semantics
judgment:
(c,o) 4 T

The interpretation of
(c,o) || o' exc

is that command ¢ terminated abruptly by throwing an exception with value n € Z at a
point in ¢’s execution when the state was ¢’. We only model one type of exception, but
every exception has an integer “argument” n (or “payload” or “value”) that is set when the
exception is thrown and available when the exception is caught.

Note that our previous command rules must be updated to account for exceptions, as in:

{c,o) ¥ o' (e, 0") Ut

(c1;09,0) |} 0’ excm (c1;¢9,0) I t

(c1,0) | 0’ excn

seq2

3

Peer Review ID: 65783874 — enter this when you fill out your peer evaluation via gradescope

3 2F-3 While Induction
- 0 pts Correct

Peer Review ID: 65783874 — enter this when you fill out your peer evaluation via gradescope

Page 8

Answer This proof cannot be done with mathematical induction on x, as there is no
minimal base case with integers. Instead, I use structural induction on number of loops of
the "while” command. The substructures of this command are each loop: how the command
behaves when the Bexp b is true, and when it is false. Let us define one base case, representing
the break case of the while loop, causing the command to produce a ¢’. This is case b ==
false; if this is the case, then the while command’s subcommands do not run. o == ¢’; since
o(x) is even, o'(z) is the same and is even as well.

The inductive cases are each substructure of the while loop; the number of times b is true
and cl (x := x + 2) is executed. If b == true is the case, then the command x := x +
2 executes. We know that for all x if x is even, x + 2 is even (as per Piazza, we are not
required to prove this). When the command executes, we transition from a state o where x
is even to a state o’ where x is even. These are the only two possible states for iterations of
the while loop.

At this point, we apply induction over the while loops. If o(x) is even, and x := x + 2
executes n times, o’(x) will be even as well. If the loop executes again, a n+1th time, o'(z)
will become ¢”(z) and is guaranteed to be even as well. By the inductive hypothesis, this is
true for any number of substructure iterations; both b == false and b == true evaluate to
o'(z) as even. Thus, for any initial state where o(x) is even, if the while command is run
and evaluates to a subsequent o', o’(z) is even.

Exercise 2F-4. Language Features, Large-Step [12 points]. We extend IMP with a
notion of integer-valued exceptions (or run-time errors), as in Java, ML or C#. We introduce
a new type T to represent command terminations, which can either be normal or exceptional
(with an exception value n € Z):

T = o “normal termination”
| o excn “exceptional termination”

We use t to range over possible terminations 7. We then redefine our operational semantics
judgment:
(c,o) 4 T

The interpretation of
(c,o) || o' exc

is that command ¢ terminated abruptly by throwing an exception with value n € Z at a
point in ¢’s execution when the state was ¢’. We only model one type of exception, but
every exception has an integer “argument” n (or “payload” or “value”) that is set when the
exception is thrown and available when the exception is caught.

Note that our previous command rules must be updated to account for exceptions, as in:

{c,o) ¥ o' (e, 0") Ut

(c1;09,0) |} 0’ excm (c1;¢9,0) I t

(c1,0) | 0’ excn

seq2

3

Peer Review ID: 65783874 — enter this when you fill out your peer evaluation via gradescope

We also introduce three additional commands:

throw e
try ¢; catch z ¢
after ¢; finally co

e The throw e command raises an exception with argument e.

e The try command executes c¢;. If ¢; terminates normally (i.e., without an uncaught
exception), the try command also terminates normally. If ¢; raises an exception with
value e, the variable x € L is assigned the value e and then c; is executed.

e The finally command executes c¢;. If ¢; terminates normally, the finally command ter-
minates by executing cy. If instead c; raises an exception with value e;, then ¢, is
executed:

— If ¢5 terminates normally, the finally command terminates by throwing an excep-
tion with value e;. (That is, the original exception e; is re-thrown at the end of
the finally block, as in Java.)

— If ¢, throws an exception with value es, the finally command terminates by throw-
ing an exception with value es. (That is, the new exception ey overrides the
original exception ej, also as in Java.)

These constructs are intended to have the standard exception semantics from languages like
Java, C# or OCaml — except that the catch block merely assigns to z, it does not bind it
to a local scope. So unlike Java, our catch does not behave like a let. We thus expect:

x :=0 ;
{ try
if x <= 5 then throw 33 else throw 55
catch x
print x } ;
while true do {
x :=x - 15 ;
print x ;
if x <= 0 then throw (x*2) else skip
by

to output “33 18 3 -12”7 and then terminate with an uncaught exception with value -24.
Give the large-step operational semantics inference rules (using our new judgment) for
the three new commands presented here. You should present six (6) new rules total.

Answers We need one rule per ”case”—as there is one case for throw, two for try, and three
for finally it makes sense to assign the new rules in this way. Throw has the simplest rule:

(e,o) I n

(throw e, o) |} 0’ exc n

4

Peer Review ID: 65783874 — enter this when you fill out your peer evaluation via gradescope

. We define a rule for try if an exception is thrown, and one if it is not:
(cl,0) | 0’ exc n{c2,0’) | t
(try cl catch x ¢2,0) | t[z := n]

{cl,0) 4 o'(c2,0) I 1
(try cl catch x ¢2,0) | o’

Finally, we define three rules for after/finally; one if ¢l terminates normally, one if c1 raises
an exception but ¢2 does not, and one if c1 and c¢2 both raise exceptions.

(cl,0) 4 o’{c2,0") I 1
(after cl finally c2,0) | t

(cl,0) | o' exc n(c2,0’) | o”
(after cl finally c¢2,0) |} 0” exc n
(cl,0) || 0’ exc nl{c2,0’) || 0" exc n2

(after cl finally c2,0) || 0" exc n2

Exercise 2F-4. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

Answer I argue that it would be much less natural to describe “IMP with exceptions” using
small-step contextual semantics. Small-step contextual semantics involve atomic steps, with
atomic rewrites every step. Atomic reductions are performed in a context H. However,
exceptions “clear the board”, so to speak. While small-step semantics do have state, there
would need to be rules that if an exception is thrown by a command every subsequent
command would be reduced to skip until the exception is handled (by a finally or catch
block, or the program ending). This would complicate the semantic rules heavily—small-step
semantics are not strictly ordered, but solved in terms of open redexes, and (for example)
modifying state in an operation which happens after an exception is called would be very
problematic.

Exercise 2C. Language Features, Coding. Download the Homework 2 code pack from
the course web page. Modify hw2.ml so that it implements a complete interpreter for “IMP
with exceptions (and print)”. You may build on your code from Homework 1 (although
the let command is not part of this assignment). Using OCaml’s exception mechanism
to implement IMP exceptions is actually slightly harder than doing it “naturally”, so I
recommend that you just implement the operational semantics rules. The Makefile includes
a “make test” target that you should use (at least) to test your work.

Hint: to check if a termination term is an exception, use syntax like

5

Peer Review ID: 65783874 — enter this when you fill out your peer evaluation via gradescope

4 2F-4 Language Features, Large Step
- 0 pts Correct

Peer Review ID: 65783874 — enter this when you fill out your peer evaluation via gradescope

Page 12

. We define a rule for try if an exception is thrown, and one if it is not:
(cl,0) | 0’ exc n{c2,0’) | t
(try cl catch x ¢2,0) | t[z := n]

{cl,0) 4 o'(c2,0) I 1
(try cl catch x ¢2,0) | o’

Finally, we define three rules for after/finally; one if ¢l terminates normally, one if c1 raises
an exception but ¢2 does not, and one if c1 and c¢2 both raise exceptions.

(cl,0) 4 o’{c2,0") I 1
(after cl finally c2,0) | t

(cl,0) | o' exc n(c2,0’) | o”
(after cl finally c¢2,0) |} 0” exc n
(cl,0) || 0’ exc nl{c2,0’) || 0" exc n2

(after cl finally c2,0) || 0" exc n2

Exercise 2F-4. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

Answer I argue that it would be much less natural to describe “IMP with exceptions” using
small-step contextual semantics. Small-step contextual semantics involve atomic steps, with
atomic rewrites every step. Atomic reductions are performed in a context H. However,
exceptions “clear the board”, so to speak. While small-step semantics do have state, there
would need to be rules that if an exception is thrown by a command every subsequent
command would be reduced to skip until the exception is handled (by a finally or catch
block, or the program ending). This would complicate the semantic rules heavily—small-step
semantics are not strictly ordered, but solved in terms of open redexes, and (for example)
modifying state in an operation which happens after an exception is called would be very
problematic.

Exercise 2C. Language Features, Coding. Download the Homework 2 code pack from
the course web page. Modify hw2.ml so that it implements a complete interpreter for “IMP
with exceptions (and print)”. You may build on your code from Homework 1 (although
the let command is not part of this assignment). Using OCaml’s exception mechanism
to implement IMP exceptions is actually slightly harder than doing it “naturally”, so I
recommend that you just implement the operational semantics rules. The Makefile includes
a “make test” target that you should use (at least) to test your work.

Hint: to check if a termination term is an exception, use syntax like

5

Peer Review ID: 65783874 — enter this when you fill out your peer evaluation via gradescope

5 2F-5 Language Features, Analysis
- 0 pts Correct

Peer Review ID: 65783874 — enter this when you fill out your peer evaluation via gradescope

Page 14

