Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

P(n) € VX € P(F). |X|<n = (Vf, [€ X. smells(f) = smells(f"))

(the notation |X| denotes the number of elements of X)

One way to formulate the statement to prove is Vn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n + 1. Pick an arbitrary set X such that |X| = n 4+ 1. Pick two distinct
flowers f, f' € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and Y’ =
X — {f'}. Obviously Y and Y’ are sets of size at most n so the induction hypothesis holds
for both of them. Pick any arbitrary z € Y NY’. Obviously, x # f and x # f’. We have that
smells(f’) = smells(z) (from the induction hypothesis on Y) and smells(f) = smells(z) (from
the induction hypothesis on Y”). Hence smells(f) = smells(f’), which proves the inductive
step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:
For any BExp b and any initial state o such that o(x) is even, if

(whilebdo z:=z+2,0) {0

then o’(z) is even. Make sure you state what you induct on, what the base case is and what
the inductive cases are. Show representative cases among the latter. Do not do a proof by
mathematical induction!

Answer We will induct on the structure of the operational semantics of the while state-
ment.

The base case corresponds to the case where the while loop terminates immediately. This
happens when the condition b evaluates to false in the initial state o. In this case, the while
loop does not execute, and the state o remains unchanged. Since o is even at first and o = o’
in the base case, ¢’ is also even.

Peer Review ID: 303721330 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 303721330 — enter this when you fill out your peer evaluation via gradescope

For inductive step, there are two cases. One is that b is false, the other is b is true. When
b is false, this case is the base case. We know the state won’t be change when the while loop
terminates. Since o(z) is even, o’(x) is even as well. When b is true, we execute z := = + 2.
we know that if o(z) is even, then o'(z) = o(x) + 2, which is still even, because the sum
of two even numbers is always even. Hence, o’(z) is even. Since the loop executes at least
once, we are left with the same situation again:

(whilebdo z:=x+2,0') || 0"

will eventually terminate, and by the inductive hypothesis, the final value of ¢”(z) will also
be even.

Thus, the invariant holds: each time the body of the loop executes, the value of x remains
even. This ensures that o’(x) is even at the end of the loop execution.

Exercise 2F-4. Language Features, Large-Step [12 points]. We extend IMP with a
notion of integer-valued ezceptions (or run-time errors), as in Java, ML or C#. We introduce
a new type 7" to represent command terminations, which can either be normal or exceptional
(with an exception value n € Z):

T 2= o “normal termination”
| o excn “exceptional termination”

We use t to range over possible terminations 7. We then redefine our operational semantics
judgment;:
(c,o) 4 T

The interpretation of
(c,0) | 0’ excn

is that command ¢ terminated abruptly by throwing an exception with value n € Z at a
point in ¢’s execution when the state was ¢’. We only model one type of exception, but
every exception has an integer “argument” n (or “payload” or “value”) that is set when the
exception is thrown and available when the exception is caught.

Note that our previous command rules must be updated to account for exceptions, as in:

(cr,0y J 0 {ca,0’) It

(c1;69,0) | 0’ excn (cr5¢0,0) | t

(c1,0) J 0’ excn

seq2

We also introduce three additional commands:

throw e
try ¢; catch x ¢y
after ¢; finally ¢,

e The throw e command raises an exception with argument e.

Peer Review ID: 303721330 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 303721330 — enter this when you fill out your peer evaluation via gradescope

e The try command executes ¢;. If ¢; terminates normally (i.e., without an uncaught
exception), the try command also terminates normally. If ¢; raises an exception with
value e, the variable x € L is assigned the value e and then ¢, is executed.

e The finally command executes c;. If ¢; terminates normally, the finally command ter-
minates by executing cy. If instead c¢; raises an exception with value e;, then ¢, is
executed:

— If ¢o terminates normally, the finally command terminates by throwing an excep-
tion with value e;. (That is, the original exception e; is re-thrown at the end of
the finally block, as in Java.)

— If ¢y throws an exception with value ey, the finally command terminates by throw-
ing an exception with value e;. (That is, the new exception es overrides the
original exception ej, also as in Java.)

These constructs are intended to have the standard exception semantics from languages like
Java, C# or OCaml — except that the catch block merely assigns to z, it does not bind it
to a local scope. So unlike Java, our catch does not behave like a let. We thus expect:

x :=0 ;
{ try
if x <= 5 then throw 33 else throw 55
catch x
print x } ;
while true do {
x g==x — 15 3
print x ;
if x <= 0 then throw (x*2) else skip
}

to output “33 18 3 -12” and then terminate with an uncaught exception with value -24.
Give the large-step operational semantics inference rules (using our new judgment) for
the three new commands presented here. You should present six (6) new rules total.

Answer

(e,o) I n (cr,0) It

th
(throw e,0) |} 0’ exc n row (try ¢ catch z ¢,0) |}

(cr,0) o {eg,0) It
(after ¢ finally ¢p,0)) ¢

try normal

(cr,0) o' excn (co,0lx:=n]) |t

finallyl
(try ¢; catch z ¢o,0) |t natly

try exception

(c1,0) I 0" excn {(cg,0") || 0" exc ny

finally3

(c1,0) § o' excny (co,0") It
c

: finally2 2
(after ¢; finally ¢y, 0) || 0/ exc ny natly (after ¢ finally ¢p,0) |} 0” exc ny

Peer Review ID: 303721330 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 303721330 — enter this when you fill out your peer evaluation via gradescope

Exercise 2F-4. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural”
if you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

Answer Small-step semantics naturally captures the idea of how each individual state-
ment or expression in a program progresses from one state to another. When dealing with
exceptions, this step-by-step approach is very useful, because exceptions are often raised or
handled in the middle of executing a program, and the program state transitions can be very
fine-grained. Small-step semantics can model the moment when an exception is raised (as a
state transition) and when it is caught or handled.

In IMP with exceptions, an exception can be thrown at any point during the execution
of a program. Small-step semantics allows for a more explicit, clear representation of what
happens at each point in time. For example, a small-step rule could be defined to handle the
transition of an exception being thrown and the effect this has on the program’s control flow,
whereas a large-step (big-step) semantics might attempt to abstract this transition away,
making it less clear when exactly the exception is thrown or how the program responds to
it.

Exercise 2C. Language Features, Coding. Download the Homework 2 code pack from
the course web page. Modify hw2.ml so that it implements a complete interpreter for “IMP
with exceptions (and print)”. You may build on your code from Homework 1 (although
the let command is not part of this assignment). Using OCaml’s exception mechanism
to implement IMP exceptions is actually slightly harder than doing it “naturally”, so I
recommend that you just implement the operational semantics rules. The Makefile includes
a “make test” target that you should use (at least) to test your work.

Hint: to check if a termination term is an exception, use syntax like

begin match term with

| Normal -> do_something

| Exceptional(n) -> do_something_else using n
end

Modify the file example-imp-command so that it contains a “tricky” terminating IMP
command (presumably involving exceptions) that can be parsed by our IMP test harness
(e.g., “imp < example-imp-command” should not yield a parse error).

Submission. Turn in the formal component of the assignment as a single PDF document
via the gradescope website. Your name and Michigan email address must appear on the
first page of your PDF submission but may not appear anywhere else. Turn in the coding
component of the assignment via the autograder.io website.

Peer Review ID: 303721330 — enter this when you fill out your peer evaluation via gradescope

