Exercise 2F-2. Mathematical Induction [5 points]

The flaw in the inductive proof arises in the induction step when attempting
to prove P(n + 1) from P(n). Specifically:

The proof states: “Pick any arbitrary x € Y N'Y’.” However, when n = 1,
Y=X\{f}and Y = X\ {f'} (where |X| = 2), resulting in Y N Y’ = (. No
such x exists in this case. The inductive step fails for n = 1 because the
intersection is empty, making it impossible to equate smells(f) and smells(f”).

Since the inductive step does not hold for n = 1,the proof does not establish
the statement for all n. The proof incorrectly assumes Y NY” is non-empty for
all n, which is false when transitioning fromn =1ton+1=2.
Highlighted Sentences in the Proof

e “Pick any arbitrary x € Y NY'. Obviously, x # [ and x # f'.” Invalid
when n=1: Y NY’ is empty.

o “Hence smells(f) = smells(f'), which proves the inductive step...” Relies
on the existence of x, which fails for n = 1.

Peer Review ID: 306421948 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 3

Peer Review ID: 306421948 — enter this when you fill out your peer evaluation via gradescope



Exercise 2F-3. While Induction [10 points]

Statement

For any Boolean expression b and initial state o where o(x) is even, if
(while b do x := z +2,0) || o/, then ¢/(z) is even.

Base Case

Case: While-False
If (b,0) — false: then by the operational semantics rule for while-false :

(while bdo z:=z+2,0) | 0.
Since o(z) is even by assumption,
o'(x) = o(x), remains even.

Inductive Step

Case: While-True
If (b,0) — true:

(x:=z+2,0) 0"
(while bdo .=z +2,0") | ¢’
(while b do z :=z +2,0) | 0.

To show o'(z) is even.
(x:=2+2,0) 0"
By the assignment rule,
a'(x) = o(x) + 2.

Since o(z) is even, o’/ (x) is even (even + even = even).

Peer Review ID: 306421948 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 4

Peer Review ID: 306421948 — enter this when you fill out your peer evaluation via gradescope



Exercise 2F-4. Language Features, Large-Step
[12 points]

Here are the six large-step operational semantics rules for the new commands:

1. Throw Command
{e,0) I n

(throw e, o) || o exc n

The throw command evaluates the expression e to a value n and immediately
terminates execution, propagating m as an exception. The state o remains
unchanged, but the result is marked as an exception with value n.

2. Try Command (Normal Termination)

{c1,0) § o’

(try ¢; catch zeg,0) | o’

If the command c¢; terminates normally (without throwing an exception), the
try command also terminates normally with the same final state o’. The catch
block ¢s is not executed.

3. Try Command (Exceptional Termination)

(c1,0) 4o’ excn (co,0'[z—n]) |t

(try ¢1 catch zea,0) |t

If the command ¢; throws an exception with value n, the exception value n is
assigned to the variable z, and the catch block ¢, is executed. The result of the
try command is the result of executing ¢y, denoted by t.

4. Finally Command (Normal Termination of ¢;)

(cr,o) o1 (ez,00) It
(after ¢; finally co,0) | ¢

If the command c; terminates normally, the finally block cz is executed. The
result of the after command is the result of executing co, denoted by .

5. Finally Command (Exceptional Termination of ¢;, Nor-
mal Termination of cy)

(c1,0) o1 excer (cz,01) § 02

(after ¢ finally co,0) |} o2 exc e1

If the command ¢; throws an exception e, but the finally block ¢, terminates
normally, the exception e; is re-thrown after executing cy. The final state is o3,
and the result is marked as an exception with value e;.

Peer Review ID: 306421948 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 4

Peer Review ID: 306421948 — enter this when you fill out your peer evaluation via gradescope



6. Finally Command (Exceptional Termination of Both ¢,
and ;)

(c1,0) o1 exc e1  {ca,01) | 02 exc e

(after ¢; finally co,0) |} 09 exc ey

If both ¢; and ¢y throw exceptions e; and ez, respectively, the exception e
(from c2) is propagated. The final state is o2, and the result is marked as an
exception with value es.

Peer Review ID: 306421948 — enter this when you fill out your peer evaluation via gradescope



Question assigned to the following page: 5

Peer Review ID: 306421948 — enter this when you fill out your peer evaluation via gradescope



Exercise 2F-5. Language Features, Analysis [6
points]

Large-step semantics summarizes execution by showing only the starting and
final states, skipping the intermediate steps. For example, if a loop runs mul-
tiple times, large-step semantics would simply state that the loop executes and
updates the state, without detailing each iteration. In contrast, small-step se-
mantics breaks execution into smaller steps, showing how each part of a program
runs incrementally. If a loop runs five times, small-step semantics would display
each individual step rather than jumping straight to the end.

When it comes to exceptions, we know that they disrupt normal execution
by immediately halting the program when an error occurs, such as a division
by zero. To manage this, the program can either handle the exception using
try-catch or perform necessary cleanup with a finally block. Since they interrupt
a program at a specific step, it makes more sense to describe them using small-
step semantics. This way, we can see when the exception happens, how the
program responds, and what happens next in a step-by-step manner. Therefore,
I believe that this method is easier and more elegant, since it doesn’t need extra
components like exception flags or special states, which large-step semantics
often require to handle exceptions.

Peer Review ID: 306421948 — enter this when you fill out your peer evaluation via gradescope



