Exercise 2F-2. Mathematical Induction [5 points]

Proof: Let F be the set of all flowers and let smells(f) be the smell of the
flower f € F. (The range of smells is not so important, but we’ll assume that it
admits equality.) We’ll also assume that F' is countable. Let the property P(n)
mean that all subsets of F' of size at most n contain flowers that smell the same.

P(n) ¥'vX € P(F), |X| <n= (Vf,f € X,smells(f) = smells(f'))

(the notation | X| denotes the number of elements of X).

One way to formulate the statement to prove is Vn > 1, P(n). We’ll prove
this by induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers
that smell the same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size
at most n contain flowers that smell the same. We will prove that the same
thing holds for all subsets of size at most n + 1. Pick an arbitrary set X such
that |X| = n + 1. Pick two distinct flowers f, f/ € X and let’s show that
smells(f) = smells(f’). Let Y = X — {f}, Y’ =X —{f'}. Obviously, Y and
Y are sets of size at most n, so the induction hypothesis holds for both of them.
Pick any arbitrary x € Y NY’. Obviously, z # f and = # f’. We have that
smells(f’) = smells(z) (from the induction hypothesis on Y') and smells(f) =
smells(z) (from the induction hypothesis on Y”). Hence smells(f) = smells(f’),
which proves the inductive step, and the theorem.

The flaw is that the proof-writer assumes that Y NY”’ is non-empty. In the
case that n = 1, we want to show that P(n + 1) holds. However in this case
|X| =2, s0|Y|=|Y'] =1, however by the construction of Y and Y”, the sole
element in each of these sets is distinct from the element in the other. The rest
of the proof fails because the proof-writer was using the fact that x exists to
link that smells(f) = smells(f").

Note: I used ChatGPT to help re-format the text to match the homework
instructions.

Peer Review ID: 306366641 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 306366641 — enter this when you fill out your peer evaluation via gradescope

Exercise 2F-3. While Induction [10 points]

Proof:
Want to show: For any BExp b and any state o such that o(x) is even if:

(while bdo z:=z+2,0) | o’ (1)

Then ¢'(z) is also even.

I prove using structural induction on the derivation tree of the given while ex-
pression from (1).

Therefore, our induction hypothesis is that for any sub-derivation of:

(while b do(z := z + 2),0") || ¢

if o’'(z) is even, then ¢”’(x) is even (I use new values for sigma to distinguish
from the states used above).
By our big-step operational semantics, we have:

(b,o) | false
(while b do ¢,0) |} o

and
(b,o) | true (¢; while b do c,0) | o’
(while b do ¢,0) || o’

Base Case:

Our base case is when our boolean b = false, since that is the statement that
will serve as the last rule in the derivation tree of the while statement. In this
case, since o(x) is even by our hypothesis, then o(z) = o/(z) is also even in a
trivial fashion.

Inductive Case:
The inductive case is when b evaluates to true. Then we use the other big-step
rule for while, and our rule-instance is:

(b,0) | true (z :=x +2;while bdo (z:=2+2),0) | o’
(while b do ¢,0) || o’

The premise (z := z+2;while b do (z := 2+2),0) |} ¢/ has two sub-derivations:
(x:=z+2,0) 0"

and
(while b do (z := z +2),0") | o’

Because o (z) is even, ¢”(z) = o(z) 4+ 2 must also be even.

This leaves the second sub-derivation (while b do (z := z +2),0”) |} ¢’. By
our inductive hypothesis, if state o’ is even, then ¢’ must also be even. This
completes the inductive step, and completes the proof.

Peer Review ID: 306366641 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 306366641 — enter this when you fill out your peer evaluation via gradescope

Exercise 2F-4. Language Features, Large-Step
[12 points]

Peer Review ID: 306366641

(e,o) Yo
(throw e, o) || o exc v
(c1,0) I T
(try cpcatch zeg, o) | T
(cr,0) b o’ excn (cg, o'[z:=n]) I T
(try cycatch xeg, o) | T
(cr,0) Vo' {co,0) U T
(after ¢; finally co, o) | T

(c1,0) Vo' excn {(co,0’) || o

(after ¢ finally ¢z, o) | 0” excn

(c1,0) b o' exen {(co,0’) || 0"’ excm

(after c; finally co, o) || 0 exc m

enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 306366641 — enter this when you fill out your peer evaluation via gradescope

Exercise 2F-4. Language Features, Analysis [6
points]

Small-step contextual semantics would be simpler for introducing exceptions to
IMP. As noted in the previous instructions, in large-step operational semantics
all of our previous command rules must be updated. Furthermore, additional
rules will need to be added to account for the command either executing nor-
mally or raising an exception at any point in execution. In contrast, small-step
contextual semantics can allow an exception to be raised as a single reduction
step. Then rules like ¢ry-catch and finally can handle the error or decide how
the error propagates, while existing rules can largely be left unchanged.

Peer Review ID: 306366641 — enter this when you fill out your peer evaluation via gradescope

