Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F.
(The range of smells is not so important, but we’ll assume that it admits equality.) We’ll also
assume that F' is countable. Let the property P(n) mean that all subsets of F' of size at most
n contain flowers that smell the same.

P(n) € VX € P(F). |X|<n = (Vf, [€ X. smells(f) = smells(f"))

(the notation |X| denotes the number of elements of X)

One way to formulate the statement to prove is Vn > 1.P(n). We'll prove this by induction
on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let m be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n + 1. Pick an arbitrary set X such that |X| = n 4+ 1. Pick two distinct
flowers f, f' € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and Y’ =
X —{f'}. Obviously Y and Y” are sets of size at most n so the induction hypothesis holds for
both of them. Pick any arbitrary z € Y N'Y’. Obviously, # f and = # f’. We have that
smells(f’) = smells(z) (from the induction hypothesis on Y') and smells(f) = smells(z) (from
the induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the inductive
step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

Solution: The flaw is in the highlighted sentence above. Consider the case where n=1,
and the set X = {f, f'} with |X| = 2. Then, subset Y = {f'} and Y' = {f}. Then
Y NY’ is the empty set, so you cannot pick an arbitrary x € Y NY”. This invalidates the
inductive step forn =1 —n = 2.

Page 2

Peer Review ID: 306029856 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 306029856 — enter this when you fill out your peer evaluation via gradescope

Exercise 2F-3. While Induction [10 points]. Prove by induction the following state-
ment about the operational semantics:
For any BExp b and any initial state o such that o(z) is even, if

(whilebdo z:=x+2,0) | ¢

then o’(x) is even. Make sure you state what you induct on, what the base case is and what
the inductive cases are. Show representative cases among the latter. Do not do a proof by
mathematical induction!

Solution:
Base Case: b evaluates to false (loop does not execute).

(b,o) | false
(whilebdoz:=x+2,0) | o

Since the state returned o’ is the same as the original state o, and we know that o(x) is
even, then o'(z) = o(x), which is even.

Inductive Case: b evaluates to true (loop executes).

(b,o) § true (z:=2x+2,0) oy (whilebdoz:=x+2,01) 0
(while bdo z :=2+2,0) | o’

For our induction hypothesis, assume that for (while b do z := z 4 2,01) |} ¢/, ¢’ is even.
Since o(x) is even, then o(x)+2 is even, thus oy () is even (after the loop body executes).
The loop is then executed again from the state o;. By the induction hypothesis, since
x + 2 will still be even, the new state will maintain the property that x is even. Thus,
o'(x) is even when the loop finishes.

Page 3

Peer Review ID: 306029856 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 306029856 — enter this when you fill out your peer evaluation via gradescope

Exercise 2F-4. Language Features, Large-Step [12 points]. We extend IMP with a
notion of integer-valued exceptions (or run-time errors), as in Java, ML or C#. We introduce
a new type T to represent command terminations, which can either be normal or exceptional
(with an exception value n € Z):

T = o “normal termination”
| o excn “exceptional termination”

We use t to range over possible terminations 7. We then redefine our operational semantics
judgment:

(c,o) 4 T

The interpretation of
(c,o) | 0’ excn

is that command ¢ terminated abruptly by throwing an exception with value n € Z at a
point in ¢’s execution when the state was ¢’. We only model one type of exception, but
every exception has an integer “argument” n (or “payload” or “value”) that is set when the
exception is thrown and available when the exception is caught.

Note that our previous command rules must be updated to account for exceptions, as in:

[seql]{ci; e, 0) I 0’ exc n{ci,0) || 0’ excn [seq2]{cy1; ca, 0) I t{cy, o) I o' {co, 0y | ¢
We also introduce three additional commands:

throw e
try ¢; catch x co
after ¢; finally co

e The throw e command raises an exception with argument e.

e The try command executes ¢;. If ¢; terminates normally (i.e., without an uncaught
exception), the try command also terminates normally. If ¢; raises an exception with
value e, the variable x € L is assigned the value e and then ¢, is executed.

e The finally command executes ¢;. If ¢; terminates normally, the finally command ter-
minates by executing cs. If instead c; raises an exception with value ey, then co is
executed:

— If ¢y terminates normally, the finally command terminates by throwing an exception
with value e;. (That is, the original exception e; is re-thrown at the end of the
finally block, as in Java.)

— If ¢, throws an exception with value eq, the finally command terminates by throwing
an exception with value e;. (That is, the new exception ey overrides the original
exception eq, also as in Java.)

Page 4

Peer Review ID: 306029856 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 306029856 — enter this when you fill out your peer evaluation via gradescope

These constructs are intended to have the standard exception semantics from languages like
Java, C# or OCaml — except that the catch block merely assigns to x, it does not bind it
to a local scope. So unlike Java, our catch does not behave like a let. We thus expect:

x :=0 ;
{ try
if x <= 5 then throw 33 else throw 55
catch x
print x } ;
while true do {
x :=x - 15 ;
print x ;
if x <= 0 then throw (x*2) else skip
}

to output “33 18 3 -12”7 and then terminate with an uncaught exception with value -24.
Give the large-step operational semantics inference rules (using our new judgment) for the
three new commands presented here. You should present six (6) new rules total.

Solution:
e throw:
We introduce the rule to throw an exception and result in an exceptional termina-
tion:
(e,0) I n
(e,0) |} 0 excn
e try-catch:
First, we introduce the rule where ¢; is executed and results in a normal termination:

(c1,0) J o

(try ¢; catch z ¢, 0) |} o

Next, we introduce the rule where ¢; results in an exceptional termination:

(cr,0) o' exen (co,0'[x:=n]) |t

(try ¢ catch © co,0) | ¢

e finally:
First, we introduce the rule where both ¢; and ¢ result in normal terminations:

(cr,0) b o' (eo,0) I o”
(after ¢; finally ¢, 0) | 0”

Page 5

Peer Review ID: 306029856 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 306029856 — enter this when you fill out your peer evaluation via gradescope

Next, we introduce the rule where ¢; results in an exceptional termination, but co
results in a normal termination:

(c1,0) J o' excn (ca,0) | 0"

(after ¢ finally co,0) |} 0" exc n

Finally, we introduce the rule where both ¢; and ¢, result in exceptional termina-

tions:
(c1,0) J 0" excny (c2,0”) I 0" exc ngy

(after ¢ finally co,0) | 0" exc ny

Page 6

Peer Review ID: 306029856 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 306029856 — enter this when you fill out your peer evaluation via gradescope

Exercise 2F-4. Language Features, Analysis [6 points]. Argue for or against the
claim that it would be more natural to describe “IMP with exceptions” using small-step
contextual semantics. You may use “simpler” or “more elegant” instead of “more natural” if
you prefer. Do not exceed two paragraphs (one should be sufficient). Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter.

Solution: I believe that it would be more natural to describe “IMP with exceptions”
using small-step contextual semantics. Exceptions can occur at any point in the program,
and we want to be able to keep track of those intermediate states exactly where the
exception occurred. Large-step semantics focuses more on the overall return state, while
small-step semantics allows for more granularity of individual steps in the program’s
execution. Thus, using small-step semantics would make it simpler to represent the exact
state an exception is thrown and how it branches off to different parts of the program,
especially when there are more complex nested try-catch or finally statements.

Page 7

Peer Review ID: 306029856 — enter this when you fill out your peer evaluation via gradescope

