12F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 65773515 — enter this when you fill out your peer evaluation via gradescope

Page 3

Exercise 2F-2. Mathematical Induction

Exercise 2F-2. Mathematical Induction [5 points]. Find the flaw in the following
inductive proof that “All flowers smell the same”. Please indicate exactly which sentences
are wrong in the proof via highlighting or underlining.

Proof: Let F be the set of all lowers and let smells(f) be the smell of the flower f € F.
(The range of smells is not so important, but we’ll assume that it admits equality.) We'll
also assume that F' is countable. Let the property P(n) mean that all subsets of F' of size
at most n contain flowers that smell the same.

P(n) € VX € P(F). |X|<n => (Vf,f € X. smells(f) = smells(f"))
(the notation | X| denotes the number of elements of X)

One way to formulate the statement to prove is Yn > 1.P(n). We'll prove this by
induction on n, as follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the
same (by the definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n+ 1. Pick an arbitrary set X such that |X| = n+1. Pick two distinct flowers
f, [’ € X and let’s show that smells(f) = smells(f’). Let Y = X — {f} and Y’ = X — {f'}.
Obviously Y and Y’ are sets of size at most n so the induction hypothesis holds for both
of them. Pick any arbitrary 2 € Y NY’. Obviouslv. # f and = # f'. We have that
smells(f’) = smells(x) (from the induction hypothesis on Y') and smells(f) = smells(z) (from
the induetion hypothesis on ¥*). Hence smells(f) = smells(f’), which proves the inductive
step, and the theorem.

(One indication that the proof might be wrong is the large number of occurrences of the
word “obviously” :-))

Peer Review ID: 65773515 — enter this when you fill out your peer evaluation via gradescope

2 2F-2 Mathematical Induction
- 0 pts Correct

Peer Review ID: 65773515 — enter this when you fill out your peer evaluation via gradescope

Page 5

Exercise 2F-3. While Induction

To prove Vsigma, sigmal € X. <while b do x := x + 2, sigma> { sigma1 = sigma1(x) is even.
Proof: by induction on the structure of the derivation D.

Reasoning by inversion on the derivation rules, we notice that the only last step in derivation of
<while b do x := x + 2, sigma> U sigma1 must be while true and while false rules.

Case: Last rule used in D was the one for while false

D1::<b, sigma> | false
<while b do x := x + 2, sigma> U sigma

D::

By inversion, this means that sigma(x) is initially even and boolean expression b is evaluated to
false. Therefore, sigma1(x) is also even. Because there is no sub-derivation, this is a base case
in the induction.

Case: Last rule used in D was the one for while true

D1:<b, sigma> U true D2:<x:=x+ 2,sigma> | t_sigma D3:<while bdo x:=x + 2, t_sigma> | sigmal

D::

<while b do x := x + 2, sigma> U sigmal

By inversion, this means that boolean expression b is evaluated to true and therefore x is
assigned to the value of x + 2. Initially, sigma(x) was even, so the D2 will make sigma1(x) as
even, and it inducts on D3 again. Because there are sub-derivations for this rule, this is an
inductive case in the induction.

Peer Review ID: 65773515 enter this when you fill out your peer evaluation via gradescope

3 2F-3 While Induction
- 0 pts Correct

Peer Review ID: 65773515 — enter this when you fill out your peer evaluation via gradescope

Page 7

Exercise 2F-4. Language Features, Large-Step

Throw e Command:
<e, sigma>ln

<throw e, sigma> | sigma excn

Try ¢1 catch x c2 Command: If c1 terminates normally
<cl, sigma> U sigmal
<try cl catch x c2, sigma> | sigmal

Try ¢1 catch x c2 Command: If ¢1 raises an exception with value e
<cl,sigma> U sigmal excn <x:=n;c2, sigmal>{t
<trycl catchx c2,sigma> U t

After c1 finally c2 Command: If c1 terminates normally
<cl,sigma> U sigmal <c2,sigmal>{lt

<after cl finally c2, sigma> U t

After c1 finally c2 Command: If c1 raises an exception with e1, and if c2 terminates normally
<cl,sigma> I sigmal excnl <c2,sigmal>l sigma2
<aftercl finally c2, sigma> I sigma2 exc nl

After c1 finally c2 Command: If c1 raises exception with e1, and if c2 throws exception with e2
<cl,sigma> U sigmal excnl <c2,sigmal> l sigma2 excn2
<after cl finally c2, sigma> U sigma?2 exc n2

Peer Review ID: 65773515 enter this when you fill out your peer evaluation via gradescope

4 2F-4 Language Features, Large Step
- 0 pts Correct

Peer Review ID: 65773515 — enter this when you fill out your peer evaluation via gradescope

Page 9

Exercise 2F-5. Language Feature, Analysis

| would argue that small-step operational semantics are necessarily not more natural to describe
“IMP with exceptions” than big-step operational semantics. One primary reason why small-step
operational semantics are not simpler than big-step for “IMP with exceptions” is that it is
intuitively straightforward to construct big-step for “IMP with exceptions” compared to small-step.
For example, try...catch has two possible data flows, and after...finally has three possible data
flows. Because execution of these exception commands have branching structure of output
path, which requires recursion, it is hard to show in a single sequence line of state while
reducing in an atomic step, which makes it hard to construct a small-step for “IMP with
exceptions”. Therefore, small-step operational semantics are not more natural to describe “IMP
with exceptions” than big-step operational semantics.

Peer Review ID: 65773515 enter this when you fill out your peer evaluation via gradescope

5 2F-5 Language Features, Analysis
- 0 pts Correct

Peer Review ID: 65773515 — enter this when you fill out your peer evaluation via gradescope

Page 11

