12F-1 Bookkeeping
- 0 pts Correct

Peer Review ID: 65778597 — enter this when you fill out your peer evaluation via gradescope

Page 3

2 Exercise 2F-2. Mathematical Induction

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F. (The range of smells
is not so important, but we’ll assume that it admits equality.) We’'ll also assume that F' is countable. Let
the property P(n) mean that all subsets of F' of size at most n contain flowers that smell the same.

P(n) € VX € P(F). |X|<n = (Vf, f' € X. smells(f) = smells(f"))
(the notation | X| denotes the number of elements of X)

One way to formulate the statement to prove is Vn > 1.P(n). We'll prove this by induction on n, as
follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the same (by the
definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n contain flowers that
smell the same. We will prove that the same thing holds for all subsets of size at most n+1. Pick an arbitrary
set X such that |X| = n + 1. Pick two distinct flowers f, f/ € X and let’s show that smells(f) = smells(f’).
Let Y = X — {f} and Y/ = X — {f'}. Obviously Y and Y’ are sets of size at most n so the induction
hypothesis holds for both of them. Pick any arbitrary x € Y NY’. Obviously, z # f and z # f'. We
have that smells(f") = smells(z) (from the induction hypothesis on Y) and smells(f) = smells(z) (from the
induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the inductive step, and the theorem.

Just to be clear about my answer, the critical flaw is in ” Pick any arbitrary z € Y NY”” - specifically, because
there is no guarantee that Y NY” is non-empty. If we can’t choose an x, then the final two sentences in the
inductive step also do not hold.

3 Exercise 2F-3. While Induction

Proof: We will prove this by inducting on the structure of derivation.

Base case: D :: —————————_ We are given that o(x) is even initially, and in the case of skip our
(ekip, o) b o
resulting state is the same as the input state, so o(x) remains even.

Dy :: (b,o) || false

(whilebdox:=x+2) o
final state is also o. Therefore, this case is equivalent to our base case skip, as for all initial states the same
resulting state is reached.

Case: the last rule in D was while-false. D :: . For any initial state o, our

Case: the last rule in D was while-true.
Dy ::(byo) I true Dy {(x:=x+2,0) o1 Ds:(whilebdoz:=z+2,01) {0’
(whilebdoz:=z+2,0) | o’

(e,0) I n
(x :=e,0) | o[z :=n)]
the induction hypothesis, o(z) is even. n is therefore two plus an even number, and is itself even. So, o1 ()
is even.

D ::

By inversion, Dy follows the rule for assignment: . By substitution, e is x + 2. By

By inversion, and the fact that b must either be true or false, D3 must follow either the while-true or
while-false forms. By Ds, we know that o1(z) is even. And by the induction hypothesis on D3, within
the rule (while b do = := z + 2,0) |} o/, if o(z) is even o’(z) is even. Since we know () is even, o'(z)
must be even in this case.

So, for all initial states o such that x is even, if (while bdo = := z + 2,0) | ¢/, then o'(z) is even.

Peer Review ID: 65778597 — enter this when you fill out your peer evaluation via gradescope

2 2F-2 Mathematical Induction
- 0 pts Correct

Peer Review ID: 65778597 — enter this when you fill out your peer evaluation via gradescope

Page 5

2 Exercise 2F-2. Mathematical Induction

Proof: Let F be the set of all flowers and let smells(f) be the smell of the flower f € F. (The range of smells
is not so important, but we’ll assume that it admits equality.) We’'ll also assume that F' is countable. Let
the property P(n) mean that all subsets of F' of size at most n contain flowers that smell the same.

P(n) € VX € P(F). |X|<n = (Vf, f' € X. smells(f) = smells(f"))
(the notation | X| denotes the number of elements of X)

One way to formulate the statement to prove is Vn > 1.P(n). We'll prove this by induction on n, as
follows:

Base Case: n = 1. Obviously all singleton sets of flowers contain flowers that smell the same (by the
definition of P(n)).

Induction Step: Let n be arbitrary and assume that all subsets of F' of size at most n contain flowers that
smell the same. We will prove that the same thing holds for all subsets of size at most n+1. Pick an arbitrary
set X such that |X| = n + 1. Pick two distinct flowers f, f/ € X and let’s show that smells(f) = smells(f’).
Let Y = X — {f} and Y/ = X — {f'}. Obviously Y and Y’ are sets of size at most n so the induction
hypothesis holds for both of them. Pick any arbitrary x € Y NY’. Obviously, z # f and z # f'. We
have that smells(f") = smells(z) (from the induction hypothesis on Y) and smells(f) = smells(z) (from the
induction hypothesis on Y’). Hence smells(f) = smells(f’), which proves the inductive step, and the theorem.

Just to be clear about my answer, the critical flaw is in ” Pick any arbitrary z € Y NY”” - specifically, because
there is no guarantee that Y NY” is non-empty. If we can’t choose an x, then the final two sentences in the
inductive step also do not hold.

3 Exercise 2F-3. While Induction

Proof: We will prove this by inducting on the structure of derivation.

Base case: D :: —————————_ We are given that o(x) is even initially, and in the case of skip our
(ekip, o) b o
resulting state is the same as the input state, so o(x) remains even.

Dy :: (b,o) || false

(whilebdox:=x+2) o
final state is also o. Therefore, this case is equivalent to our base case skip, as for all initial states the same
resulting state is reached.

Case: the last rule in D was while-false. D :: . For any initial state o, our

Case: the last rule in D was while-true.
Dy ::(byo) I true Dy {(x:=x+2,0) o1 Ds:(whilebdoz:=z+2,01) {0’
(whilebdoz:=z+2,0) | o’

(e,0) I n
(x :=e,0) | o[z :=n)]
the induction hypothesis, o(z) is even. n is therefore two plus an even number, and is itself even. So, o1 ()
is even.

D ::

By inversion, Dy follows the rule for assignment: . By substitution, e is x + 2. By

By inversion, and the fact that b must either be true or false, D3 must follow either the while-true or
while-false forms. By Ds, we know that o1(z) is even. And by the induction hypothesis on D3, within
the rule (while b do = := z + 2,0) |} o/, if o(z) is even o’(z) is even. Since we know () is even, o'(z)
must be even in this case.

So, for all initial states o such that x is even, if (while bdo = := z + 2,0) | ¢/, then o'(z) is even.

Peer Review ID: 65778597 — enter this when you fill out your peer evaluation via gradescope

3 2F-3 While Induction
- 0 pts Correct

Peer Review ID: 65778597 — enter this when you fill out your peer evaluation via gradescope

Page 7

4 Exercise 2F-4. Language Features, Large-Step

Our rule for throw is relatively simple: given a starting state o, our resulting state is the same, with an
added exception:

(e,o) I n

(throw e, o) |} 0 excn

try is somewhat more complex, with two cases, depending on whether or not the first command c; terminates
without exception:

(c1,0) | o (c1,0) J o excn (ca,olx:=n]) |t

(try cq catchxz o) | o (try ¢q catch x ca,0) | ¢

finally is the most complex. We will need several cases depending on how both ¢; and ¢ terminate:

(c1,0) Y o (c2,0") § o” (c1,0) } o excn (ca,0) | o
(after ¢; finally co,0) |} o (after c; finally co,0) | 0’ excn
(c1,0) |} 0 excmy (c2,0) |} 0 excngy

(after ¢q finally cg,0) || 0 exc ngy

5 Exercise 2F-5. Language Features, Analysis

In my view, it would not be significantly simpler or more elegant to represent IMP exceptions using small-
step contextual semantics. Small-step semantics are useful when a construct may be naturally defined in
terms of existing constructs, for example a while loop may be rewritten as an if statement, with the while
duplicated in the if-true branch. Exceptions, however, are fairly specialized constructs. A try for example
can’t be rewritten using existing branch constructs, despite the fact that it conditionally executes one of its
commands, because the factor it branches on (the presence of an exception) is strictly part of the state -
not a boolean expression. Were we to attempt to describe IMP exceptions with small-step semantics, we
would need to define separate reduction rules for each of the different stateful cases, such as whether c; is
exceptional or not in a try. This is essentially what we did in large-step semantics, sans the redexes and
contexts needed for small-step. So, ultimately, I think it is simpler and clearer to use large-step semantics
to describe this construct.

Peer Review ID: 65778597 — enter this when you fill out your peer evaluation via gradescope

4 2F-4 Language Features, Large Step
- 0 pts Correct

Peer Review ID: 65778597 — enter this when you fill out your peer evaluation via gradescope

Page 9

4 Exercise 2F-4. Language Features, Large-Step

Our rule for throw is relatively simple: given a starting state o, our resulting state is the same, with an
added exception:

(e,o) I n

(throw e, o) |} 0 excn

try is somewhat more complex, with two cases, depending on whether or not the first command c; terminates
without exception:

(c1,0) | o (c1,0) J o excn (ca,olx:=n]) |t

(try cq catchxz o) | o (try ¢q catch x ca,0) | ¢

finally is the most complex. We will need several cases depending on how both ¢; and ¢ terminate:

(c1,0) Y o (c2,0") § o” (c1,0) } o excn (ca,0) | o
(after ¢; finally co,0) |} o (after c; finally co,0) | 0’ excn
(c1,0) |} 0 excmy (c2,0) |} 0 excngy

(after ¢q finally cg,0) || 0 exc ngy

5 Exercise 2F-5. Language Features, Analysis

In my view, it would not be significantly simpler or more elegant to represent IMP exceptions using small-
step contextual semantics. Small-step semantics are useful when a construct may be naturally defined in
terms of existing constructs, for example a while loop may be rewritten as an if statement, with the while
duplicated in the if-true branch. Exceptions, however, are fairly specialized constructs. A try for example
can’t be rewritten using existing branch constructs, despite the fact that it conditionally executes one of its
commands, because the factor it branches on (the presence of an exception) is strictly part of the state -
not a boolean expression. Were we to attempt to describe IMP exceptions with small-step semantics, we
would need to define separate reduction rules for each of the different stateful cases, such as whether c; is
exceptional or not in a try. This is essentially what we did in large-step semantics, sans the redexes and
contexts needed for small-step. So, ultimately, I think it is simpler and clearer to use large-step semantics
to describe this construct.

Peer Review ID: 65778597 — enter this when you fill out your peer evaluation via gradescope

5 2F-5 Language Features, Analysis
- 0 pts Correct

Peer Review ID: 65778597 — enter this when you fill out your peer evaluation via gradescope

Page 11

