EXTENDS Naturals, FiniteSets
Imports standard modules that define operators of arithmetic on natural numbers and the
Cardinality operator, where Cardinality(S) is the number of elements in the set S, if S is finite.
CONSTANT Value
The set of all values that can be chosen.
VARIABLE chosen
The set of all values that have been chosen.

The type-correctness invariant asserting the “type” of the variable 'chosen’. It isn't part of the
spec itself-that is, the formula describing the possible sequence of values that 'chosen’ can have
in a behavior correct behavior of the system, but is an invariance property that the spec should
satisfy.

TypeOK = A chosen C Value

A IsFiniteSet(chosen)

Figure 1: A Beautifully Formatted Snippet from Leslie Lamport’s Turing Award
Winning PAXOS Code (yes this is real compilable code)

Exercise 1F-2. Language Design

Where I think Hoare Is Correct

Hoare describes that “A good programming language will encourage and assist
the programmer to write clear self-documenting code, and even perhaps to de-
velop and display a pleasant style of writing.” This evokes thoughts of easily
readable modern languages like Python. Python, being slower than many other
languages has gained widespread popularity through usability and readability.
Python programs are unusually easy to write and often read nearly like English.
While I enjoy a Python project as much as anyone, in my experience the lan-
guage which best captures the idea that Hoare is targeting here is Lamport’s
TLA+. This language is not so much a programming language as a mathemat-
ical protocol modeling language. TLA+ builds up mathematical models of the
concept an engineer may want to write. Because the language is directly com-
posed of math formulas, it is easily model checked. This captures another point
Hoare covers. Hoare mentions that determining what you want your program
to *do* is often as challenging as describing that to a compiler. TLA+ pulls
this task to the front of the queue, where the program specification detailed in
a “tla” file and verified in the TLA+ IDE is also producible in very readable
formats (fig 1). An implementation in some modern language can reference the
verified and well formatted specification to achieve a correct and well designed
algorithm born from the structure of thinking required by TLA+. TLA+ pulls
together the idea of self documentation, and provides extremely effective aid to
help an engineer think through the purpose of the algorithm they’re designing.

Where I think Hoare Is Incorrect

Hoare describes the introduction of references and pointers as “a step backward
from which we may never recover”, and has famously taken responsibility for the
introduction of the Null pointer. I note that Hoare doesn’t distinguish between

Peer Review ID: 63225206 — enter this when you fill out your peer evaluation via gradescope

so called “smart pointers” and actual pointers. I believe it’s always a security
risk to introduce pointers which may or may not get garbage collected later in
the code. I agree that trying to track pointers throughout code causes many
subtle bugs, and leads to a host of programming problems that could be avoided
if pointers weren’t used. All this still doesn’t convince me of the argument that
they represent a detriment for programming languages. Smart pointers have
built-in security and automatic garbage collection which effectively leaves these
points moot. Pointers were introduced for valid reasons and represent an idea
that cannot be matched by other methods.

In some cases pointers offer algorithmic efficiency which cannot be reached
through other methods. Less copying is required when using pointers, and
structures like linked lists are most efficient when built using pointers. We often
think of program efficiency in terms of how quickly we can run a program,
time complexity, or how much memory it takes, space complexity. It’s worth
remembering that these metrics all eventually run on real machines. Every
copy, iteration, etc, will cost some amount of energy. The world continues
to move online, and our consumption transitions from physical commodities
to cyber-products. While transport and manufacturing continue to lead the
charge to damage the only livable planet we have, we should be careful to design
programming languages which allow programmers to produce more efficient and
therefore environmentally friendlier methods. Designing a language which can
exploit the efficiencies of smart pointers, while avoiding the pitfalls of traditional
pointers provides a middle ground Hoare seems to be overlooking here.

Exercise 1F-3. Simple Operational Semantics

We need to be careful about handling the case where the denominator is
zero, in this case we should throw an error as division by zero is undefined.
Because Aexps in IMP are integer in type, we also assume the mathematical
division we use is integer division which is defined to be:

a€ZbeZ

EfFJ

b Lb
<ey,o>lng <eg,0>|ne

< ei/es, 0 >| |n1/ns]
if nl € Z/{0},n2 € Z/{0}

Exercise 1F-4. Language Feature Design, Large Step

Here we first find the previous value of x, in IMP if this variable is new it will
be set to zero automatically. Next we find the value of e and augment o to
produce some o’ such that ¢’ is the result of ¢ in sigma where x gets n2. Finally
we execute a skip in o’ where x gets nl resulting in the final ¢” where x is the
same value as in o, but any work done by c is preserved.

<z, o>ln <eo>lny <colzi=ng >lo <skip,or:=n1] >l

<let x=¢€ in c,0 >|o"

Peer Review ID: 63225206 — enter this when you fill out your peer evaluation via gradescope

Exercise 1F-5. Language Feature Design, Small Step
The small step implantation of
letz=einc

Have H ::=

(we can reduce the entire let statement using the rule I define two lines below.)
Addtor :: =x:

|letx=einc

Add the following local reduction rule:

(letx = einc,0) = (x:=e;c;x :=0(x),0)

Notice that the right side of the reduction rule is a set of already existing
rules. I show below how we can use the reduction I added to compute a concrete
value.

A pseudo concrete execution of the rule might look like this. We have some
initial state o, which contains the original value of x as o(x). We then proceed
to take single steps until we have ¢/, which is exactly sigma, but with x now set
to the final value of e, I call this n. Next we run the command c, and produce

o”. Finally we set x = o(x) thus producing the third and final o’”.

(Comm, State) Redex o Context
(let x:=einc, o)
(x:=¢; ¢ x:=0(z),0) e x = e;¢;x :=o(x)
(x:=mn;¢;x:=0(x),0) x:=n o, c;x:=0(x)
(¢; x :=o(x), o) c o;x:=o(x)
(x:=o0o(z), 0") o(z) X:=e
(x:=mn, ¢") X:=1 .

(skip o)

Peer Review ID: 63225206 — enter this when you fill out your peer evaluation via gradescope

1HWI1 (select all pages: your first page has your name and bookkeeping, and all

others are anonymous))
- 0 pts Correct

Peer Review ID: 63225206 — enter this when you fill out your peer evaluation via gradescope

Page 6

