Exercise 1F-2. Language Design [5 points]. Comment on some aspect from Hoare’s
Hints On Programming Language Design that relates to your programming experience. Pro-
vide additional evidence in favor of one his points and against one of his points. Do not
exceed three paragraphs. Both your ideas and also the clarity with which they are expressed
(i.e., your English prose) matter. Readers should be able to identify your main claim, the
arguments you are bringing to bear, and your conclusion.

Hoare introduced many interesting points in Hints On Programming Language. First
Hoare emphasised the importance on fast translation and shared some thoughts on how to
make compilers faster. I took several compiler related courses, and I really agree that pre-
scan can make compilers run much faster. Based on my experience, the scanner I wrote ran
super slow compared to other parts of my compiler. However, I would also want to extend
this point. I believe Hoare ignored the fact that there is a trade off between the efficiency
of compiler and the speed of code. I wrote a compiler with some optimizations like Dead
Code Elimination, Common Subexpression Elimination and Forward Copy Propagation. I
also designed a Register Allocation scheme. These all made my compiler run slower, but my
code ran faster later. Therefore, I believe we should not only focus on the fast translation
itself, but also notice this trade off.

Hoare put emphasis on programming documentation. I strongly agree with that. During
my several research experience, I found many codes are extremely long and without doc-
umentation. It wasted me much time to just make these codes run. Debugging on badly
documented code was extremely painful.

Last interesting point from Hoare’s article is that he claims it’s almost impossible to
persuade programmers to change their programming languages. I'm against this claim. After
taking several compiler related courses and programming for years, I found programming is
an way of thinking. Once you get the higher level view of programming for example the
design principle of programming language. I think we will able to appreciate the strengths
and weaknesses of different programming languages. In this way, it will make it easier for
us to pick up a new programming language and make us more open-minded to different
programming languages.

Peer Review ID: 63133342 — enter this when you fill out your peer evaluation via gradescope



Exercise 1F-3. Simple Operational Semantics [3 points]. Consider the IMP lan-
guage discussed in class, with the Aexp sub-language extended with a division operator.
Explain what changes must be made to the operational semantics (big-step only). Write out
formally any new rules of inference you introduce.

To add a division operator, we need to allow the expressions to be able to change the
state. Because divided by 0 will lead to an error. Define the error state as o..

< eg,0>|0
< 61/62,0' >U Oc

<eno>n <eyo>lng
< 61/62,0 >»U Lnl/ngj

Peer Review ID: 63133342 — enter this when you fill out your peer evaluation via gradescope



Exercise 1F-4. Language Feature Design, Large Step [10 points|. Consider the

IMP language with a new command construct “let x = e in ¢”. The informal semantics

of this construct is that the Aexp e is evaluated and then a new local variable x is created

with lexical scope ¢ and initialized with the result of evaluating e. Then the command c is

evaluated. We also extend IMP with a new command “print e” which evaluates the Aexp

e and “displays the result” in some un-modeled manner but is otherwise similar to skip.
We expect (the curly braces are syntactic sugar):

X =1 3

y =2 ;

{ let x = 3 in
print x ;
print y ;

X :=4 ;
y : =5

i

print x ;

print y

to display “3 2 1 5”.

Extend the natural-style operational semantics judgment (c,o) |} ¢’ with one new rule
for dealing with the 1let command. Pay careful attention to the scope of the newly declared
variable and to changes to other variables.

<eo>|n
<z:=e, o> 0"
<letz=einc,o>| o’

L @& &= o(T),0" =0

Peer Review ID: 63133342 — enter this when you fill out your peer evaluation via gradescope



Exercise 1F-5. Language Feature Design, Small Step [10 points]. Extend the set
of redexes, contexts and reduction rules for the contextual-style operational semantics that
we discussed in class to account for the let command introduced above.

Context:
H: ==
llet H in ¢
Redezx:

llet z =ninc

Reduction rule:
<letz=ninco>—o<z:=n;¢x:=0(x),0 >

For the reduction rule, x := n;c;z := o(x) can be regarded as ¢

Peer Review ID: 63133342 — enter this when you fill out your peer evaluation via gradescope



1HWI1 (select all pages: your first page has your name and bookkeeping, and all

others are anonymous))
- 0 pts Correct

Peer Review ID: 63133342 — enter this when you fill out your peer evaluation via gradescope

Page 7



