Exercise 1F-2. Language Design [5 points].

One aspect from Hoare’s Hints On Programming Language Design that relates to my pro-
gramming experience is the concept of simplicity. Hoare states that some programming
language designs have prioritized modularity to improve simplicity, allowing a programmer
to work with a language even with limited understanding. My experience with high-level
languages such as Python have reflected this. Python’s simple and abstracted syntax en-
courages clarity and ease of use. However, due to its simplistic syntax, there have been cases
where I have had to dealt with unexpected errors or behavior. As a simple example, the 7+
operator in Python can be used in several cases. Numerical values can be summed with it,
but types such as strings can also be concatenated with it. If I wanted to add the strings ”5”
and 76" numerically, I would have to first cast them to integers. Doing so without casting
would result in ”56”, a result that could be overlooked if not careful. In short, I agree with
Hoare in that significant modularity can be overwhelming in certain situations.

A different aspect from Hoare’s Hints On Programming Language Design that I disagree
with is his view on comment conventions, specifically his criticism of special bracketing
symbols. In my opinion, although it is true that omission or misplacement of a comment
bracket can result in issues, this concern is miniscule in comparison to the convenience that
special bracketing symbols provide. The symbols provide the ability to insert large comments
when needed, and any errors that arise from it can typically be easily caught by the developer.
In short, rather than introducing awkward problems, I believe special bracketing comment
conventions actually introduce a significant amount of convenience.

Exercise 1F-3. Simple Operational Semantics [3 points].
In order to extend the Aexp sub-language with a division operator, we can introduce a new
rule of inference:

(e1,0) U n1 (e, 0) yny ng#0
(e1/ea,0) I mi/no
To be more precise, we evaluate the expressions e; and e; to n; and ns, respectively. We
can express division as the value n;/ny. As an additional requirement, we must ensure ny is
not 0 to avoid division by 0.

Exercise 1F-4. Language Feature Design, Large Step [10 points].
In order to extend the natural-style operational semantics judgment (c, o) |} ¢’ with one new
rule for dealing with the let, we can introduce a new rule of inference:

(e,0y In (c,olxz:=n]) o

(letx=einco) o

We first evaluate the expression e to n in our current state. Then, we evaluate the
command c in a modified state that maps x to the new value n, which results in a new state.

Peer Review ID: 302620868 — enter this when you fill out your peer evaluation via gradescope



Questions assigned to the following page: 4 and 5

Peer Review ID: 302620868 — enter this when you fill out your peer evaluation via gradescope



Since z only exists in the scope of the let statement, we return the original state o after
evaluating ¢ within the modified state.

Exercise 1F-5. Language Feature Design, Small Step [10 points].
In order to extend the set of redexes to accommodate let, we need to include the following
to the set of redexes:

let z=einc

Continuing, in order to extend the set of contexts, we can add a new context for let.
When doing so, we want to make sure to evaluate the expression e first:

H:=...|letz=Hinc

Finally, in order to extend the reduction rules, we can add two new rules. First, we need
to evaluate the expression e into a value n:

(let z =einc¢,0) = (let z =n in ¢, 0)

Continuing, once we have evaluated e, we can bind z locally to n and and simplify:

(let x =nin ¢,0) — (c,0[z :==n])

Peer Review ID: 302620868 — enter this when you fill out your peer evaluation via gradescope



