Exercise 1F-2. Language Design [5 points].

A few years ago I would have said that ease of writing programs is more important than
ease of reading them; but after spending a few summers working in the industry I fully agree
that readibility is the far more important factor. It is painful to have to modify unreadible,
convoluted code that you haven’t written, and promoting readability is a good feature for a
programming language to have. While Hoare makes a number of points worth of discussion
and debate, I will focus on his arguments in favor of block/local scope and against references.

Hoare argues very convincingly in favor of block structure and local variable scope. Al-
though block structure can sometimes cause unintuitive results when variable names are
reused, scoping variables locally whereever possible does indeed strenghten the readability,
maintability, and ease of coding a program. Anecdotally, I have tried using many global
variables on several programming projects in the past, and it has never gone as easily as
I anticipated: it is difficult to keep track of where global variables are and conceptually
should be modified, whereas passing in parameters and declaring variables at the function
level makes it much easier to get the program right and understand the logic. Aside from
contexts like mutex-protected shared state across threads where local scope is unwiedly, lo-
cal variables should be preferred over global (or even dynamically allocated) variables whose
behavior is difficult to reason about. And even though most of us don’t need to worry about
our program exceeding main memory, the space savings from using local variables whose
storage space can sometimes be substantial.

Hoare makes some incendiary remarks on references and pointers, claiming that “their intro-
duction into high level languages has been a step backward from which we may never recover”
(page 20). While any EECS 280 student could tell you that pointers and references are con-
fusing and can be a major source of programmer error, references are actually a strength of
modern programming languages in my opinion. Object-oriented programming makes heavy
use of the Liskov Subsitution Principle that we can substitute objects of a child class for
objects of a parent class, and base class pointers are generally how this is implemented in
languages like C++. References can also provide tremendous space savings when passing a
reference instead of a data structure filled with heavyweight object by value to a function.
Using references correctly can indeed be challenging, but the reward of proper use is well
worth the risk of misuse, making references a good feature to include in a programming
language and not a hindrance.

2

Peer Review ID: 63273083 — enter this when you fill out your peer evaluation via gradescope

Exercise 1F-3. Simple Operational Semantics [3 points]. Consider the IMP lan-
guage discussed in class, with the Aexp sub-language extended with a division operator.
Explain what changes must be made to the operational semantics (big-step only). Write out
formally any new rules of inference you introduce.

Solution: I introduce the following rule of inference for “IMPish” integer division:

(er,0) dm1 (ez,0) §ny (n2=0,0) | false
(e1/€2,0) 4 [n1/ns]

Informally, this rule:
1. Evaluates e; to ny

2. Evaluates es to ne
3. Verifies that ny # 0

4. Performs integer division of ny /ny by dividing n; and ny normally, then taking the
floor. Alternatively, this can be viewed as finding the largest integer m such that
ny-m < ny. (Note that | | is defined as the regular floor operator.) So something
like 3/2 would evaluate to [3/2] = 1.

The above rule deals with the case of correct behavior, but it does introduce some unintu-
itive behavior for the other Aexp sub-language rules/operational semantics (e.g. e; + e3)
in the case of illegal expressions like (5/0) 4+ 2: they can have “side effects” and cause
the program to never terminate. If we write (5/0) + 2, we have an e; 4 ey, but with the
above rule e; can’t resolve the division operator and won’t evaluate to any n;, so we are
stuck and cannot terminate. I would actually say that hanging/seg faulting/failing to
resovle this illegal behavior case is fine, as IMP programs aren’t guaranteed to termiante
anyways (cf. while true do skip). An alterative, slightly more complicated resolution
would be to introduce something to the effect of a FAIL state, then have an attempted
division by zero (where (ny = 0,0) |} true) resolve to the FAIL state that should some-
how cause the program to terminate with an error, but envisioning a “nicer” resolution
for attempted illegal division in IMP is left as an exercise to the reader.

3

Peer Review ID: 63273083 — enter this when you fill out your peer evaluation via gradescope

Exercise 1F-4. Language Feature Design, Large Step [10 points]. Consider the
IMP language with a new command construct “let z = e in ¢”. The informal semantics
of this construct is that the Aexp e is evaluated and then a new local variable x is created
with lexical scope ¢ and initialized with the result of evaluating e. Then the command c is
evaluated. We also extend IMP with a new command “print e” which evaluates the Aexp
e and “displays the result” in some un-modeled manner but is otherwise similar to skip.

Extend the natural-style operational semantics judgment (c,o) |} ¢’ with one new rule
for dealing with the let command. Pay careful attention to the scope of the newly declared
variable and to changes to other variables.

Solution: I introduce the let command for the above scenario:

ol n (B = 0(8); &) | 0w = ol@))]
(B = 6,0 [Tpernp =)]} | O Bremp =@ T =0 (&0|Bmp =@z =mal) &'

(iL‘ = Ltemp; 0/> 4 0"[1‘ — xteml’] <xtemp =0, O-I[x = xtemp]> J Ol[x = Ttemp; Ttemp -— 0]
(let z =ein c,0) § (0'[x := Ttemp, Ttemp = 0])

Informally, this rule:
1. Evaluates e to n

2. Updates o’s state to contain z’s old value (or 0, if z has not yet been initialized)
so that old x can come back after new x goes out of scope.

3. Assigns the result of e, n, to x
4. Evaluates ¢ with thie new x in scope

5. After ¢ has resolved to ¢/, take new x out of scope by replacing its value with old
x and zeroing out the temporary x value

While it requires a number of premises, this singular rule for let covers all cases in
big-step fashion and appropriately deals with issues of scope.

4

Peer Review ID: 63273083 — enter this when you fill out your peer evaluation via gradescope

Exercise 1F-5. Language Feature Design, Small Step [10 points]. Extend the set
of redexes, contexts and reduction rules for the contextual-style operational semantics that
we discussed in class to account for the 1let command introduced above.

Solution: I introduce the following reduction rules, redexes, and contexts for let:

H = ...|-|ifH then ¢ else co|H;c|x := Hl|let H in ¢

r = ...[if true then ¢; else ¢y; |skip ;c|x :=n|let z in ¢

(let z := n inc,0) — (if o(x) = 0 thenlet z := n in ¢ else Ty, = o(z);let v =
nin ¢, o)

(Ttemp = o(x);1let x:=n in ¢,0) — (skip ;let z :=n in ¢, 0[Temp = o(T)])
(skip ;let x :==mn in ¢,0) — (let z:=n in ¢, o)

(let x :==n in ¢,0) — (let skip in ¢, o[z := n])

(let skip in ¢, o]z := n]) — (skip ; ¢, o[z := n])

(skip ; ¢, o[z :=n]) = (c, o)z :=n])

5

Peer Review ID: 63273083 — enter this when you fill out your peer evaluation via gradescope

1HWI1 (select all pages: your first page has your name and bookkeeping, and all others

are anonymous))
- 0 pts Correct

Peer Review ID: 63273083 — enter this when you fill out your peer evaluation via gradescope

Page 7

