Exercise 1F-2. Language Design [5 points]

For:

In Section 2 of Hoare’s writing, he makes the point that a good programming language
will encourage the programmer to write clear self-documenting code, a point I strongly
agree with. As I am still in the beginning stages of my programming career, I have
had to learn many different programming languages throughout the course of my
internships. Two languages stand out to me during my learning experience. PHP:
I had a pretty miserable experience looking through and trying to understand how
different pieces of PHP code functioned. Much of the syntax and behavior of the code
was quite confusing to me and required extensive comments in the code to understand.
Scala: the language itself was quite intuitive, and it was much easier for me to follow
along with what was happening in different portions of the code, even without any
comments. [was able to ramp up much faster working with the Scala codebase and
was able to deliver meaningful contributions in much shorter timeframes. Much of
a programmer’s job is in maintaining older codebases, and this requires being able
to easily read through, understand, and then updating the code. In languages where
the code itself is not as self-documenting, there is a much higher burden on both on
the original developper to maintain readibility and a much higher cost for any code
maintenance /refactoring to occur.

Against:

I would argue against Hoare’s requirement of simplicity, and instead argue for mod-
ularity, one of the design patterns he actually disputes in section 3.1. With a well-
implemented system of modularity, a programmer will not need to understand the
entirety of a language to effectively code in that language, while still allowing the lan-
guage to contain modules that can support more complex behaviors. By having these
modularized, more complex pieces, a language can allow more advanced program-
mers to develop cleaner and more efficient code without really negatively affecting
the experience of more beginner programmers in the language. Furthermore, with
modern IDEs and debugging tools it is much easier for a programmer working in a
new language to avoid accidentally invoking language behaviors they did not intend
to. At one point in my internship this past summer, I had to update some python
code and allow support different functions with similar/same behaviors. Through
the use of Python’s function decorators, I was able to cleanly add this functionality
to each of the functions without code duplication, in addition to allowing any new
reader to know which functions in the code utilized this new functionality. Within
Python, decorators are a clearly modularized piece of the language that allows more
familiar programmers to better encapsulate their behavior without stepping on the
toes of a beginner in the language.

Peer Review ID: 63098615 — enter this when you fill out your peer evaluation via gradescope

Exercise 1F-3. Simple Operational Semantics [3 points]

The lefthand side division operator is division for the IMP language. The righthand
side division operator is arithmetic division for integers, and we floor the value so we
get appropriate integer division. Since division by 0 is undefined, there’s no point in
defining the value.
er, o ng 2,0 |} na
< 61/62,0’ >U Lnl/ngj

Exercise 1F-4. Language Feature Design, Large Step [10 points|

The goal is to create a state in which x is set to e and use that state to evaluate c.
However, we need to be sure we can retrieve the value of x at which we stored it, so
we’ve saved it into its own state variable. Thus, we end up with

<xz:=-e,00 > 01 <c,o1 > 09 < x:=o0p(x),00 > 03

<let x:=einc,o9 >| o3

Exercise 1F-5. Language Feature Design, Small Step [10 points]

We want to be able to handle both the simple and the more complicated case. The
simple case of our let statement occurs if the statement does not indeed change the
x value at all. Thus, we have the reduction statement:

<letz:=ninco>—=<c,0> ifn=o(z)

We need to also be able to handle reductions in the case where n # o, so we end up
with the following additional reduction statement:

<letz:=ninco>o<z:=n;cz:=0(x),0 > ifn#o(z)
The redex comes to us for free from our reductions
let x:=ninc

Now, we need our context. In order to appropriately define what we can recurse
on, we need to figure out what variables. Since ¢ already has its own context and
reduction rules as seen in lecture, we don’t need to define anything else for it. Then,
we focus on the let x := e. We cannot substitute out the entire z := e expression
as we need the value of e during our redex and reduction steps. Thus, we substitute

Peer Review ID: 63098615 — enter this when you fill out your peer evaluation via gradescope

out the e for H, so that we can obtain the value we need and still allow for further
recursion. Thus, we end up with our context

let x:=H in ¢

Now, putting all our pieces together, we end up with our final solution:

H:=...|letz:=Hinc

FE= . | lebBi=nine

<letz:=ninco>><co> if n =o(x)
< let =10 nee > Fi=nax =o), 0> if n # o(z)

Exercise 1C. Language Feature Design, Coding

Submitted on Autograder

Peer Review ID: 63098615 — enter this when you fill out your peer evaluation via gradescope

1HWI1 (select all pages: your first page has your name and bookkeeping, and all

others are anonymous))
- 0 pts Correct

Peer Review ID: 63098615 — enter this when you fill out your peer evaluation via gradescope

Page 6

