Exercise 1F-2. Language Design

Hoare’s advice on simplicity matches my experience with Python and Java.
Python is much easier for me to use because its syntax is simple and clear, which
helps me focus on solving problems instead of worrying about complicated lan-
guage rules. On the other hand, I found Java to be more complex because it
has more rules and requires more code for even simple tasks, like handling er-
rors. This makes programming slower and harder to follow, which goes against
Hoare’s idea of keeping things simple.

However, I also found that Hoare’s advice on clarity isn’t always perfect.
Java’s detailed syntax is clear in some ways, but it can make things harder to
understand, especially when writing basic operations. For example, in Java, I
have to write extra code to do simple things that Python handles more easily.
This shows that too many rules or steps can actually make a language less clear
and harder to use.

On the other hand, Hoare’s point about safety is something I agree with,
especially from my experience using C#. The type system in C# ensures that
data types are used correctly, preventing errors that could otherwise occur, such
as accidentally mixing up a number with a string. In languages like C# and
Java, the type system is strong and static, which means you have to declare
the type of each variable, and the language checks the types before the program
runs. This catches errors early, making your code safer and more reliable. In
contrast, Python uses a dynamic type system, which is more flexible but
means that type errors might not be caught until the program is running. So,
while Python is simpler and faster for development, I think C#’s stricter type
system makes it safer in the long run, even if it adds some complexity.

Peer Review ID: 302604842 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 302604842 — enter this when you fill out your peer evaluation via gradescope

Exercise 1F-3. Simple Operational Semantics

To extend the IMP language with a division operator, we need to make the
following changes:

1. The production rule for arithmetic expressions (Aexp) is updated to in-
clude division:
en=---|ej/es for ey, es € Aexp

2. New rules of inference for division The operational semantics of division
requires the addition of a new inference rule. Division by zero is not allowed.

Standard Case (Division by a Non-Zero Number)

<€17<T> I ny <€27U> Jny no 750
(e1/ea,0) | ni/ny

e ¢; and ey are evaluated under the state o, producing n; and ng.

e The condition ng # 0 ensures division by zero is not allowed.

e The result is the quotient ny/ns.

Error Case (Division by Zero)

If no = 0, the semantics do not define a result, and the evaluation is invalid.
This situation must be handled separately to prevent undefined behavior.

Peer Review ID: 302604842 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 302604842 — enter this when you fill out your peer evaluation via gradescope

Exercise 1F-4: Language Feature Design, Large
Step

To extend the operational semantics of the IMP language to handle the new con-
structs let x = e in c and print e, we define the following rules of inference.

New Constructs and Informal Semantics

1. **let x = e in c:** - The arithmetic expression e is evaluated in the cur-
rent state o to obtain a value n. - A new variable x is introduced with lexical
scope restricted to ¢, and it is initialized to n. - The command c is then executed
in the updated state, and the original state o is restored upon completion.

2. *print e:** - The arithmetic expression e is evaluated in the current
state o to obtain a value n. - The value n is "displayed” (un-modeled in the
semantics), but the state o remains unchanged.

Formal Rules of Inference

We extend the natural-style operational semantics judgment (c, o) |} o’ with the
following rules:

Rule for let x = e in ¢

(e,o) In (c,olz:=n]) "

(let z=e in c,0) | o

- e is evaluated under the state o to produce a value n. - The command c is
then executed under an updated state o[z := n], where maps to n. - Once ¢
completes, the scope of = ends, and the original state o is restored.

Rule for print e

(e,o) I n

(print e,0) | o

- e is evaluated under the state o to produce a value n. - The value n is dis-
played (un-modeled in the semantics), and the state o remains unchanged.

The given program execution is as follows:
e 1z :=1: Updates o(z) = 1.
e y:=2: Updates o(y) = 2.
e let x =3 in {...}:

— x = 3: Introduces a local variable x with value 3.

Peer Review ID: 302604842 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 302604842 — enter this when you fill out your peer evaluation via gradescope

print x: Displays 3.

print y: Displays 2 (outer y remains 2).
x := 4: Updates the local x to 4.

y := 5: Updates the outer y to 5.

Upon exiting the let scope, the local z is discarded, and o(z) reverts to

1.

e print x: Displays 1 (restored value of z).

e print y: Displays 5 (updated value of y).

The program displays: 3 2 1 5.

Peer Review ID: 302604842

enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 302604842 — enter this when you fill out your peer evaluation via gradescope

Exercise 1F-5. Language Feature Design, Small

Step
Step | Redex Context Next Step

1 Ti=1 z:=0,y:=0] | (skip, [z :=1,y:=0])

2 y:=2 pi=1ly:= (skip, [z :== 1,y := 2])

3 letz=3in ... | [z:=1,y:= (print z; print y; z := 4;y :=5, [z := 3,y := 2])
4 print x z =3,y :=2| | (skip, [z := 3,y := 2]) (prints "3”)
5 print y z:=3,y:=2| | (skip, [z := 3,y := 2]) (prints 727)
6 Ti=4 z:=3,y:=2] | (skip, [z :=4,y:=2|)

7 y:=5 =4,y :=2| | (skip, [z :=4,y :=5])

8 print x Fi=1l.ygi= (skip, [z := 1,y := 5]) (prints ”1”)
9 print y z:=1,y:=5] | (skip, [z := 1,y := 5]) (prints ”5")

6

Peer Review ID: 302604842 — enter this when you fill out your peer evaluation via gradescope

