2. 1F-2

Solution: An aspect of Hoare’s Hints On Programming Language Design that 1 can
relate to as a programmer is the objective of modularity, or the fact that a programmer
who doesn’t fully know the ins and outs of a language can still get by with only a limited
understanding of the language. A benefit to this is that it is very easy to pick up new
languages as an experienced programmer, which I've been able to do (such as picking
up Python with C++ knowledge) because a lot of the keywords and syntax overlap.
However, the new language may have a more efficient way to achieve something that I
may not know about. I think that this idea of modularity makes it challenging for new
language designers to innovate too far from the norm of already developed languages.
Having clear documentation can certainly be a step forward in encouraging programmers
to gain a full, deeper understanding of a new language.

One of Hoare’s points that I agree with is that language designers should focus on de-
signing a readable language, as well as one that encourages programmers to write good
comments. Since human programmers are frequently collaborating on writing code, it’s
important for them to efficiently read other people’s code, and this includes documenta-
tion. This improves maintainability and reduces errors for larger-scale projects. Although
the computer is indeed the last to execute the code, humans are ultimately the ones behind
creating software, and the design of the language should cater to their cognition.

One of Hoare’s points that I would argue against is that automatic type conversion is
dangerous. Although I somewhat agree that it may be beneficial on the compiler level
in terms of quickly catching type-matching errors, there is evidence of many program-
ming languages that do not require explicit types such as Python and Javascript. These
languages still perform well and safely, and enhance the programmer’s efficiency, as well
as the flexibility and conciseness of code. While there may be some merit to Hoare’s
argument such as the fact that dynamic typing encourages sloppy programs, I think that
it may actually have better benefits if the language is designed carefully.

3. 1F-3

Solution: First, we add a new division operator to the Aexp abstract syntax:
el/e2 for el,e2 € Aexp
Then, we introduce the following big-step rule:

<€1,J>J,’n,1 <62,0’>J,n2 TLQ'ZO

(e1/ea,0) L ny/ny

Page 2

Peer Review ID: 302616909 — enter this when you fill out your peer evaluation via gradescope



Questions assigned to the following page: 3, 4, and 5

Peer Review ID: 302616909 — enter this when you fill out your peer evaluation via gradescope



In the case that the denominator is zero, the conclusion results in an error, so we introduce
the rule:
<€1,U> \Lnl <€270'> \LO
(e1/eq,0) | error
4. 1F-4

Solution: The following rule extends the IMP language to include the let command:

(e,o) I n (c,olz:=n]) o

(let x =ein ¢,0) | o’'[z :=n]

This evaluates e to n in state o, then evaluates ¢ in the original state ¢ with x replaced
with the new value n, resulting in a new state ¢’. The final state returned is ¢’ with x
replaced to its original value from o.

5. 1F-5

Solution: To extend the set of redexes, contexts and reduction rules for the let com-
mand, let x = e in ¢, we first add a new redex:

ro=letx=cinc

Next, we add a new context:
H:=letx=Hinc

Finally, we add two reduction rules. One to evaluate the expression e:
(H[r], o) = (H[n], 0)
The next to execute the command with the updated value for x:

(let x =nin ¢,0) = (¢, o[z :=n))

Page 3

Peer Review ID: 302616909 — enter this when you fill out your peer evaluation via gradescope



