Exercise 1F-2. Language Design [5 points]. Comment on some aspect from Hoare’s
Hints On Programming Language Design that relates to your programming experience. Pro-
vide additional evidence in favor of one his points and against one of his points. Do not
exceed three paragraphs. Both your ideas and also the clarity with which they are expressed
(i.e., your English prose) matter. Readers should be able to identify your main claim, the
arguments you are bringing to bear, and your conclusion.

Answer:

In his paper Hints On Programming Language Design, Hoare outlines what he considers es-
sential properties of programming languages. The concept that I most agree with is that the
burden of program safety - and specifically memory safety - falls on the programming lan-
guage itself, not the programmer. Conversely, the point that I disagree with is that program
writeablity is a relatively unimportant concern when designing a programming language.

The point I most agree with is that “The objective of security has also been widely ig-
nored; it is believed instead that coding errors should be removed by the programmer,”
(page 7) Specifically, with anything that relates to memory management in C++, it is up
to the programmer to manage all memory, to make sure not to dereference a null pointer,
to make sure that pointers actually point to valid data, and to free up that memory exactly
when it is no longer needed. Even in programming languages that boast garbage collectors,
the compilers cannot identify if a null value is being used until runtime. It is my belief that
programming languages should, at their core, address these concerns so that the programmer
can spend more time developing functionality rather than having to fix memory or pointer
problems. In fact, the language Rust aims to do just that:“Rust’s rich type system and
ownership model guarantee memory-safety and thread-safety — enabling you to eliminate
many classes of bugs at compile-time.” (https://www.rust-lang.org/) Rust’s syntax enables
ensures memory safety, and programming languages should attempt to move towards such
model. Overall, memory management and program safety should be a concern of the pro-
gramming language and not the programmer.

One point I disagree with Hoare on is his claim that “The readability of programs is immea-
surably more important that their writeability.” (page 3) This claim omits the fact that a
lot of programming is tinkering, trying things a certain way, and then another, repeatedly.
If program writeability is overlooked then using a language based on this principle might be
unnecessarily tedious. This is supported by my experience of preferring Python over C++
for the simple reason that it is much easier to attempt something small quickly in Python.
Overall, T disagree with Hoare’s claim that program writeablity is unimportant, as tinkering
is an essential part of my programming journey.

2

Peer Review ID: 63152768 — enter this when you fill out your peer evaluation via gradescope

Exercise 1F-3. Simple Operational Semantics [3 points]. Consider the IMP lan-
guage discussed in class, with the Aexp sub-language extended with a division operator.
Explain what changes must be made to the operational semantics (big-step only). Write out
formally any new rules of inference you introduce.

Answer:
We extend Aexp with:
e = ..
| e1/ex for e, es € Aexp

We need to change the operational semantics in two ways: the first is that we need to
add new judgment(s) to deal with this rule, and exceptions to deal with the special case of
division by zero. Let us add these two judgments:

(e1,0) I m (e2,0) 4 0 div — zero (e1,0) I m (e2,0) | ny
(e1/e9,0) |} DivisonByZeroError VT ze (e1/e3,0) |} ny/ng

iv

div may only be used if ny # 0.

3

Peer Review ID: 63152768 — enter this when you fill out your peer evaluation via gradescope

Exercise 1F-4. Language Feature Design, Large Step [10 points]. Consider the

IMP language with a new command construct “let x = e in ¢”. The informal semantics

of this construct is that the Aexp e is evaluated and then a new local variable x is created

with lexical scope ¢ and initialized with the result of evaluating e. Then the command c is

evaluated. We also extend IMP with a new command “print e” which evaluates the Aexp

e and “displays the result” in some un-modeled manner but is otherwise similar to skip.
We expect (the curly braces are syntactic sugar):

i
print x ;
print y

to display “3 21 5”.

Extend the natural-style operational semantics judgment (c, o) |} ¢’ with one new rule
for dealing with the let command. Pay careful attention to the scope of the newly declared
variable and to changes to other variables.

Answer:
The new rule for dealing with the 1let command is:

(e,o) I n (c,olz :=n]) | o

(let x =e in c,0) | o'[x := o(x)

] let — com

This command says that the expression e evaluates to n, at which point n is bound to z in
o. We then evaluate ¢ with this modified o and it yields a new state ¢’. We then revert x
to its value in the original o as it has gone out of scope.

4

Peer Review ID: 63152768 — enter this when you fill out your peer evaluation via gradescope

Exercise 1F-5. Language Feature Design, Small Step [10 points]. Extend the set
of redexes, contexts and reduction rules for the contextual-style operational semantics that
we discussed in class to account for the 1let command introduced above.

Answer:
We can expand the set of redexes to:

ron=

| let x=n in ¢

We can then expand the set of contexts to include the let command:

H = ..
| let x=H in ¢

We can finally expand the set of reduction rules to include this new let redex with:

(let z=n in c,0) = {(z:=n; (c; z:=0o(x)),0)

5

Peer Review ID: 63152768 — enter this when you fill out your peer evaluation via gradescope

1HWI1 (select all pages: your first page has your name and bookkeeping, and all others

are anonymous))
- 0 pts Correct

Peer Review ID: 63152768 — enter this when you fill out your peer evaluation via gradescope

Page 7

