Exercise 2. During reading Hoare’s Hints On Programming Language Design, one of the
parts that I found the most interesting and attracting was the section “4. Comment Conven-
tions”. The section makes several points regarding designing comment conventions, among
which I am in particular impressed by the following two points (corresponding to the first
two points in the only list in that section):

1. large comment overheads should be avoided as they are “particularly discouraging to
short comments”;

2. comment conventions should be designed such that a comment is never limited to
appear only at particular positions, especially when “it would sometimes be more
relevant elsewhere”.

The Item 1 is especially inspiring, indicating that comment conventions can potentially affect
how people write comments, and even whether people write comments or not! As a result
they potentially affect at least the readability of programs, which I did not realized in the
past. The Item 2 aligns closely with my personal programming experience, that I am used to
place comments in various places throughout a program, even in the middle of an expression
e.g. for explaining immediately what is going on in a tricky calculation. To further exemplify,
the comment convention is exactly among the language features that, not to offend, prevent
me from being a fan of Python (with the indent-oriented syntax being another such feature
by the way). There is only the #. .. syntax for end-of-line comments and there is no way to
put comments in the middle of an expression, which violates Item 2 in the aforementioned list
of desired properties of comment conventions — people often use the ’’?...7?? structure
for multiline comments, but that is essentially syntax for string literals and thus cannot be
placed arbitrarily among expressions, and even if it could, the triple-apostrophes could be
considered large overheads violating Item 1.

Among the ingenious and clearly elaborated points in the paper, there nevertheless exists
some parts that I fail to appreciate. In the section “8. Variables”, it is claimed that “the
concept of reference, pointer, or indirect address” immediately damages the benefits of using
separate variables to secure programs. However, I would consider references essential to
efficient programs where it is critical that large data structures are able to update partially,
instead of having a full copy at each update; e.g. we would definitely like to have efficient
trees of various kinds, and, as a super familiar example, my first submission to the coding
Exercise 1C this time copied the whole state hash table at let commands, and not sur-
prisingly received Timed out. Hence as a result there must exist mechanisms for specifying
the part in a (large) data structure that is shared before and after an update, which, as far
as I could conceive, have the role equivalent to references. On the other hand, references
might not necessarily be harmful as long as we seek to live with them (which, as discussed
above, are necessary and inevitable as long as we seek efficiency), and without compromis-
ing security. E.g. it turns out that a straightforward way to “fix the bug” introduced by
references is to use them in a “purely functional” manner, allowing only constant references
(pointers that point to constant type instead of pointers that point constantly, i.e., using
the C syntax, const T * or T const * instead of T * const for some type T). Since the

2

Peer Review ID: 63139140 — enter this when you fill out your peer evaluation via gradescope



troubles are caused as references allow programs to write arbitrarily, limiting references to
be read-only gets rid of the troubles completely at least in the mentioned aspect. In fact,
there do exist immutable (and even persistent) data structures that perfectly do (more than)
the desired jobs, securely and efficiently.

The discussions around references remind me of Hoare’s another famous statement, often
referred to as “billion-dollar mistake”:

I call it my billion-dollar mistake. It was the invention of the null reference in

1965. ... This has led to innumerable errors, vulnerabilities, and system crashes,
which have probably caused a billion dollars of pain and damage in the last forty
years.

In my opinion this statement is often misinterpreted as we should not have null in program-
ming languages, but actually we could barely live without null — mathematically null is
the base case for lists, trees, etc., and using it enables programs to be recursive in a clean
way, instead of being filled with corner cases, and thus easy to reason about. Personally
the statement might be more about separating null from references in type systems, mak-
ing null a type of its own, using nullable references when necessary, and optionally setting
references to be non-nullable by default. In summary the discussions about both references
and null (originate with Hoare and) demonstrate that for every feature of programming
languages there are of course advantages in expressiveness while there might also be poten-
tial harm to program complexity and security; sometimes we might have to trade off, while
sometimes it might turn out to be possible to achieve the best in both worlds, by figuring
out and eliminating unnecessary use cases of the feature (e.g. non-constant references and
unnecessary non-nullable references discussed so far).

3

Peer Review ID: 63139140 — enter this when you fill out your peer evaluation via gradescope



Exercise 3. In order to extend the operational semantics of IMP with division operator,
we could and it suffices to add the following new rule for the division operator:

<€1,U> Iy <€2,U> NP
(e1/e,0) I n1/n2

Here the mathematical expression n;/ne could stand for |ni/ne] or [ni/ng] or [ni/ns]
(either round half up, or round half down, round half towards zero, round half towards
infinity, etc.; see https://en.wikipedia.org/wiki/Rounding), or even the rational division
if IMP is further extended from integral data type to rational data type.

Exercise 4. Notice that the command let x = e in c is equivalent to x := e; ¢ except that
at the end of ¢ the value of z should be recovered to its old value as if the whole command
is not executed. Therefore the new rule for the let command could be:

(@ =eieg,0) o

(let x =€ in ¢,0) | o'[x := o(z)]

Note that here referencing o(z) in o[z := o(z)] is valid as these are mathematical expres-
7, it is also equivalent! to have the

(132

sions. By composing with the rules for “;” and “=
following rule for the 1let command:

(e,o) I n (c,olz:=n]) o

(let x =€ in ¢,0) | o'[x := o(z)]

Exercise 5. Similar to the previous Exercise, we could aim at translating let x =n in ¢
to x := n;c followed by a recovery of the value of . This kind of translation is similar to
what we did for the while command (when the loop guard is true). Analogous to the toolkit
for the while command, the contexts, redexes, and reduction rules for the let command
could be extended as follows:

H := ... (i.e. nothing to extend) ,
P= == | 186 =H90 6,
(let z=n inc¢,0) = (x :=n;cx = o(x),0) .

Note that here referencing o(z) in z := n;¢;x := o(x) is valid as the reduction rules are

W.”

mathematical constructions. Moreover, by composing with the reduction rules for “;” and
“:.=", the new reduction rule can be optionally slightly simplified as:

(let z =n in ¢,0) = (¢;x :=o(x), 0]z :=n]) .

1Strictly speaking the second rule is only necessary compared with the first rule, while it could be
considered sufficient as long as we only care about the inferences about the program and do not care which
path we follow to reach the inferences.

4

Peer Review ID: 63139140 — enter this when you fill out your peer evaluation via gradescope



1HWI1 (select all pages: your first page has your name and bookkeeping, and all others

are anonymous))
- 0 pts Correct

Peer Review ID: 63139140 — enter this when you fill out your peer evaluation via gradescope

Page 6



