EXERCISE 1F-2: LANGUAGE DESIGN

Hoare’s “Hints on Programming Language Design” offers timeless principles that guide the

design of programming languages, emphasizing clarity, simplicity, and purpose.
Supporting: "A language should be designed for a clear purpose."

A programming language that is designed with a clear, focused purpose tends to be more
effective, as it aligns the features of the language with the tasks it aims to solve. For instance,
SQL’s design is centered on querying and managing relational databases. Its declarative syntax,
which allows users to specify what data they want without dictating how to retrieve it,
epitomizes this principle. My experience working with SQL in data analysis projects
demonstrated how purpose-driven design simplifies complex operations, such as joining
multiple tables or aggregating results, which would be cumbersome in a general-purpose
language like C. In contrast, languages that attempt to be everything to everyone often fail to
deliver an intuitive experience for specialized tasks. A clear example is JavaScript’s early
evolution—initially intended for web scripting, it grew to include features for server-side
programming, leading to inconsistencies and a steep learning curve for beginners. Designing a
language with a clear purpose ensures that its syntax, semantics, and abstractions are cohesive,

predictable, and well-suited for the domain, as SQL demonstrates.
Challenging: "The language should be as simple as possible."

While simplicity is a noble goal in language design, striving for absolute simplicity can lead to
limitations and an inability to handle real-world complexity. A clear counter-example is
JavaScript’s early attempt to maintain simplicity by omitting strict type-checking. While this
made the language accessible to beginners, it resulted in frequent runtime errors that were hard
to debug, especially in large-scale applications. For instance, dynamic typing allowed silent
type coercion (“1” + 2 = “12”), which led to subtle bugs. In contrast, languages like Rust
demonstrate that embracing a certain level of complexity can yield immense benefits. Rust’s
borrow checker—though initially challenging for new developers—ensures memory safety and
prevents common bugs like null pointer dereferencing and data races. This complexity
empowers developers to write safer, more performant code without needing additional
debugging tools. Rust’s success underscores that simplicity should not come at the expense of
robustness, scalability, or safety. Instead, language designers must balance simplicity with the

ability to meet complex demands effectively.

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 2

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

Conclusion

In conclusion, Hoare’s principle of designing a language for a clear purpose is fundamental to
creating tools that excel in their domains, as evidenced by SQL’s success in database
management. However, the principle of maintaining simplicity as a primary goal can
sometimes hinder a language’s ability to address real-world challenges, as shown by
JavaScript’s early pitfalls. Instead, language designers should aim for thoughtful, domain-
specific complexity that empowers users without unnecessary burdens. These lessons
emphasize the importance of balancing clarity, simplicity, and practicality in programming

language design.

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

EXERCISE 1F-3: SIMPLE OPERATIONAL SEMANTICS

To extend the big-step operational semantics of the IMP language with a division operator (/)
in the Aexp sub-language, we must define a new inference rule that specifies how to evaluate
division. This rule must handle the constraints of division, particularly ensuring that division

by zero is undefined.
Formal Rule for Division Operator
The new rule for the division operator is as follows:
(e1,0) U ny(e,,0) Unyn, #0

e
<—1, 0’) Un, +n,
)

Where:
(e1,0) U n, represents that the expression e, evaluates to n, in state o.
(e5,0) U n, represents that the expression e, evaluates to n, in state o.
n, # 0 ensures that division by zero is undefined.
(Z—:, o) U n; +n, specifies the result of dividing n,; by n,.
Explanation of the Rule
1. Evaluation of Operands:
o First, evaluate the left operand e; to obtain its value n, in the current state o.
o Next, evaluate the right operand e, to obtain its value n, in the same state o.
2. Constraint on Division by Zero:

o The rule is applicable only when n, # 0. If this condition is not met, the

. eq - . . .
expression e—l is undefined, and no judgment can be derived for the expression.
2

3. Result of Division:

o If both e; and e, are successfully evaluated and the constraint n, # 0is

satisfied, the result of the division :—1 isn; +n,
2

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 3

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

Integration with Existing Rules

This rule follows the same structure as other arithmetic rules in the Aexp sub-language, such

as addition or multiplication.
For example, the rule for addition is:

(e1,0) U ny(ez,0) U ny
(e, +ey0)Un, +n,

The division rule similarly evaluates both operands before applying the operation and

introduces an additional constraint (n, # 0) to ensure semantic correctness.
Constraints and Assumptions
1. State Consistency:

The state o remains unchanged during the evaluation of the division operator

since arithmetic operations do not modify state variables.
2. Undefined Behavior:
o Division by zero is not defined within this semantics. Any attempt to evaluate

:—1 when n, = 0 results in no valid judgment for the expression.
2

By introducing this rule, the Aexp sub-language of IMP now supports division while adhering
to the principles of big-step operational semantics. This extension maintains consistency with
the existing rules and explicitly handles the edge case of division by zero, ensuring correctness

and clarity.

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

EXERCISE 1F-4: LANGUAGE FEATURE DESIGN, LARGE STEP

To extend the big-step operational semantics of the IMP language with two new constructs,
let x = e in c and print e, the following inference rules are introduced. These rules account for
variable scoping (let) and side effects (print), ensuring the semantics are both expressive and

consistent with existing language features.
Formal Rule forletx = e inc

The let construct introduces a local variable x with a value determined by evaluating the
expression e. This variable is scoped to the command ¢ and does not affect the program state
outside the construct.

(e,0) U n{c,a[x »n])l o’
(letx=einc,a)l o’

Where:
(e, 0) U n represents that the expression e is evaluated to n in the current state g.
o[x » n] indicates a new state where x maps to n, shadowing any previous definition of x.

(c,a[x » n]) U ¢’ represents the command ¢ being executed in the updated state, resulting in

the final state o'
(letx = e in c,0) U o' represents the entire let construct evaluating to the final state \sigma'.
Explanation of let x=e in ¢
1. Evaluation of e:
o The expression e is evaluated in the current state o, producing a value n.
2. Scoped Variable Introduction:

o A new state is created with the variable x bound to n, ensuring that X is only

visible within the scope of c.
3. Execution of c:

o The command c is executed in the new state, potentially modifying it further.

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

4. Scoping Rules:
o Once ¢ completes, the binding of x is discarded, restoring the original scope.
Formal Rule for print e

The print construct evaluates the expression e and "displays" its result as a side effect. The

program state remains unchanged.

(e,o)In
(printe,o) U o

Where:
(e, 0) U n represents that the expression e is evaluated to n in the current state o.

(print e, o) U o indicates that the state ¢ remains unchanged, and the result n is "displayed"

(unmodeled in this semantics).
Explanation of print e
1. Evaluation of e:
o The expression e is evaluated in the current state \sigma, producing a value n.
2. Side Effect:

o The value n is "displayed" (the mechanics of which are left abstract in this

semantics).
3. State Preservation:

o The program state remains unchanged, as print does not modify variables or

memory.
Integration with Existing Rules
o Consistency with Existing Constructs:

o The let rule resembles sequencing (c1; c2) but introduces a scoped variable

binding.

o The print rule behaves like a skip command with an additional side effect.

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 4

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

e Enhanced Expressiveness:

o let enables temporary bindings, reducing redundancy and improving

modularity.

o print provides side-effectful output, expanding IMP’s capabilities for debugging

and interaction.

By introducing these rules, the semantics of the IMP language are extended to support scoped
variables and side effects. These additions maintain the simplicity and clarity of the big-step

operational semantics while enhancing the language’s expressiveness and practicality.

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

EXERCISE 1F-5: LANGUAGE FEATURE DESIGN, SMALL STEP

To extend the small-step operational semantics of the IMP language with the let x =e in ¢
construct, the following modifications are introduced. These changes include defining the
redexes (reducible expressions), contexts, and reduction rules that ensure correct scoping and
evaluation. The new rules and their explanations maintain consistency with the existing small-

step semantics of IMP.
Redexes and Contexts
Redex for letx =einc:
ri:=letx =einc
A redex for let encapsulates the expression e and command c.

Contexts:

H ::=e | H;c|z:= H |if H then ¢, else cy |while H do c

Contexts define where reductions can occur within a program and include placeholders () for

redexes.
Reduction Rules for let x=ein ¢

The let construct introduces a local variable, evaluates the expression e, and executes the

command c within the scope of x. This behavior is modeled in small steps.
1. Reduction to Evaluate Expression:

e—-e

letx =einc—>letx =e'inc
e Ifthe expression e is not yet a value, it is reduced in small steps until it becomes a value.
2. Reduction to Introduce Scoped Variable:

e 1s a value

letx =einc - c[x - e]

e Once e is fully evaluated, the variable x is bound to its value, and c is executed in this

updated environment.

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

Explanation of the Rules
1. Reduction to Evaluate Expression:

If e is not a value, it is reduced using the small-step semantics defined for expressions
(Aexp). This ensures that all expressions are evaluated incrementally and avoids

prematurely executing the body c.
2. Reduction to Introduce Scoped Variable:

After e is fully reduced to a value, the variable x is bound to this value. The substitution

c[x » e] ensures that x is only visible within the scope of c.
Integration with Existing Rules
The new rules for let integrate with existing small-step semantics constructs:

o Consistency with Sequencing: The behavior of let X = e in ¢ mirrors sequencing, but

with the additional step of scoping.

o Evaluation within Contexts: The redex and context definitions ensure that reductions

occur in the appropriate order and location.

e Modularity: These rules are designed to extend the semantics without altering the

behavior of existing constructs like if, while, or assignments.

By introducing these rules, the small-step operational semantics of IMP now support scoped
variables via the let construct. These changes adhere to the principles of stepwise evaluation,

ensuring both correctness and clarity in execution.

Peer Review ID: 302578505 — enter this when you fill out your peer evaluation via gradescope

