EECS 590 HW 1 Due on February 5th

0F-2. While many of Hoare’s points still ring true to this day, the rapid advancement of computing
technology over the past 50 years has led to some parts of this publication feeling rather
outdated

Considering the agreeable aspects, some of Hoare’s suggestions are so now ubiquitous as to
seems trivial. Comment styles among all popular languages have essentially converged to
the C-like comments Hoare recommends, the idea of lacking arithmetic expressions is almost
laughable, and program features for structured control flow and blocks have become the norm.
Other points, however, have yet to be fully realized, and his criticism are still quite reflective
of modern languages in my experience. For example, the benefits of static types as Hoare
lays out are quite to obvious to me - they eliminate large classes of errors and make code
easier to reason about. While languages like Python and JavaScript are still widespread, I
personally find that their lack of static types makes large-scale projects much more difficult
to maintain. Others seem to agree, with things like type annotations and typed-variants of
these languages (e,g, TypeScript) becoming ever more popular.

However, other aspects of Hoare’s suggestions, particularly related to optimization and ma-
chine code, now seem quite irrelevant. For example, Hoare argues that optimizing compilers
should be avoided in favor of more readable, reasonably efficient object code. Yet, outside
of relatively rare use cases, the average programmer now has little care or knowledge for the
machine code output of their compiled program, and the speed gain that machine-code level
optimization brings is well-worth any such tradeoffs. Similarly, Hoare argues against sepa-
rate debugging and production compilations, but with ever better compiler optimizations and
practically limitless memory, there seems to be little downside to doing so. However, taking
this publication for what it is - a set of recommendations from 1973 - perhaps Hoare deserves
a pass on these small points.

OF-3. To support a division operator ’/’, we must add a new inference rule to the big step operational
semantics which describes the evaluation of ej /e for e1,ea € Aexp. Formally, we add the
inference rule

(er1,0) I n1 (ez,0) d ng
(e1/e2,0) | n3 , where ny # 0 and n1 = na - ns.

Note that this only defines a partial operation i,e, if ny = 0 or there is no such ng, then the
division operation is undefined.

0F-4. We add the rule
(e,0) I n (c,olz=n]) | o

(let z =€ in ¢,0) || o'[z = o(z)].

OF-5. To account for the let command, we extend the redexes and contexts to be

ra=-+|let s =ninc
H:=.--|letz=Hinc

and add the reduction rule

(let x=ninc, 0) = (x:=n; ¢; x :=o0(x), o).

Peer Review ID: 62782009 — enter this when you fill out your peer evaluation via gradescope

2

1HWI1 (select all pages: your first page has your name and bookkeeping, and all others

are anonymous))
- 0 pts Correct

Peer Review ID: 62782009 — enter this when you fill out your peer evaluation via gradescope

Page 4

