Exercise 1F-2. Language Design.

Hoare’s article put emphisis on the the importance of programming documentation and
programming debugging. I strongly agree with that. During my last internship, I worked as
a software development engineer. However, the most of my time was spent on reading and
understanding the code rather than developing. It is painful to read code written by others
without a clear documentation, especially when the code is made by many people. As a
programmer, debugging is the most usual task. However, this usual task can be unusually
hard. Especally when it comes to multi-thread programming. It is very hard to locate or
even reproduce a bug. It will be quite helpful to have a language that can detect errors
before actually running the software.

I'm in favor of the importance of efficiency of object code. Besides the reasoning given
in the article, I'd like to extend the ‘efficiency’ to include not only time-efficiency but also
energy-efficiency. There are uncountablely many computers all over the world, which con-
sume a lot of energy. Different programming languages have very different energy-efficiency.
For example, Go consumes about 2 times more energy than C and Python uses 70 times
more!.If the programming languages are more efficient, a lot of energy will be saved.

In the reasoning of fast translation, the author argues that to split a large program into
moodules is cumbersome and has many other disadvantages. I'm against this. If a program
can be completed using just a single source file, there won’t be many lines of code (around
5000 lines for example). To compile such a short program won’t take long. And I believe
it is not too small to hold a complete logic unit. However, for a truely large scale program,
like Linux, there are about 27.8 million lines of code 2. Can you image just one file contains
these lines of code? So, it is very important to split large scale programs into modules.

Exercise 1F-3. Simple Operational Semantics.

To add a division operator, the expressions need to be able to change the state. Because
devided by 0 will lead to an error. Since an error can occur, we also need to add an error state
Oerr- And the judgement will be like < e,0 >{< n,o’ > which means if an error occurs,
0’ = 0er and the evaluated value n is ignored and if no error, 0/ = ¢ and n is correctly
evaluated.

There will be new general rules of inferrence:

<ep,o><n, oy > < ey, 0 ><n, og >
<e; op ey, 0 ><n, 00 > <eopeyo><n, oy >

where op = {4, —, %, /}. These two rules mean that if an error occurs during the evaluation
of sub-expressions, the evaluation changes the state to error state.

'Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jdcome Cunha, Jodao Paulo Fernandes, and Jodo
Saraiva. 2017. Energy Efficiency across Programming Languages.

2Swapnil Bhartiya. 2020. Linuz in 2020: 27.8 million lines of code in the kernel, 1.3 million
in systemd.

2

Peer Review ID: 63110302 — enter this when you fill out your peer evaluation via gradescope

For the division operator, the new rules are:

< ey,0><0,0 > <ep,o><n;, o> <epo><ny#0,0>
<eifes, 0 >|< n, 00y >’ < ejfes, 0 >|<ni/ny, o >

These two rules mean that if e; evaluates to 0, the evaluation will change the state to error
state. Otherwise, the evaluation is correctly done.

Exercise 1F-4. Language Feature Design, Large Step.

<eo>|n
<zx:=e, o> 0"
<letx=einc,o >| o’

<c x:=o0(x),0" >} o

Exercise 1F-5. Language Feature Design, Small Step.
Redex:

==
| let x =mnin ¢

| let skip in ¢
Reduction rule:

<let x =ninc,o0 > —<let skip in z :=n;c;x :=o(x),0 >
< let skip in ¢,0 > —< skip;c, 0 >

Context:

3

Peer Review ID: 63110302 — enter this when you fill out your peer evaluation via gradescope

1HWI1 (select all pages: your first page has your name and bookkeeping, and all others

are anonymous))
- 0 pts Correct

Peer Review ID: 63110302 — enter this when you fill out your peer evaluation via gradescope

Page 5

