Exercise 1F-2. Language Design [5 points]. Comment on some aspect from Hoare’s Hints On
Programming Language Design that relates to your programming experience. Provide additional
evidence in favor of one his points and against one of his points. Do not exceed three paragraphs. Both
your ideas and also the clarity with which they are expressed (i.e., your English prose) matter. Readers
should be able to identify your main claim, the arguments you are bringing to bear, and your conclusion.

In favor

In some of the hints that he gives, he points to the way comments are handled and the how the
omission of END notation leads to sections of codes disappearing and overflowing to another section of
code. | agree with this idea as | avert using /* */ for comments in C++ and a bit cautious using python as
it does not require explicit declaration of different sections of code (i.e. it uses spaces to differentiate
sections of code). | find both practices very prone to error as | would comment out huge sections of
code that | did not mean to, and group code together without an easy way of check if the code is spaced
the right amount.

Against

| disagree with his claim that pointers should be removed due to their complexity. The 2 languages that
I’'m most comfortable with are C++ and Python. And every time that | transition from C++ to Python, I'm
always stumped by how | my code would work under the hood when | change the assignment of a
variable. However, it’s much more clearer with C++ as | would just change the address of the pointer. |
understand the argument that this practice leads to more errors but giving the option to the
programmer aids in writing efficient code.

Exercise 1F-3. Simple Operational Semantics [3 points]. Consider the IMP language discussed in class,
with the Aexp sub-language extended with a division operator. Explain what changes must be made to
the operational semantics (big-step only). Write out formally any new rules of inference you introduce.

Division is unique in that it cannot be divided by zero, while other operations does not impose a limit in
the operands. Therefore, for a division operator | would check if the denominator is a zero before the
operation is performed.

e, ,o>v N
46\..‘.'5 Y J) U’T"k(_ <(3[JO/ZUID‘_

(e, TOUNT T Certer &> UM/n

Peer Review ID: 63223950 enter this when you fill out your peer evaluation via gradescope

Exercise 1F-4. Language Feature Design, Large Step [10 points]. Consider the IMP language with a new
command construct “let x = e in ¢”. The informal semantics of this construct is that the Aexp e is
evaluated and then a new local variable x is created with lexical scope c and initialized with the result of
evaluating e. Then the command c is 1 evaluated. We also extend IMP with a new command “print e”
which evaluates the Aexp e and “displays the result” in some un-modeled manner but is otherwise
similar to skip.

We expect (the curly braces are syntactic sugar):

x:=1;

y=2;

{letx=3in
print x ;
printy;
X:=4;
y:=5

}s

print x;

printy

to display “3 21 5”.

Extend the natural-style operational semantics judgment <c, o> U ¢’ with one new rule for
dealing with the let command. Pay careful attention to the scope of the newly declared variable and to

changes to other variables.
<E€,02UnN , /
)e:= e,,<r>~U'a"’C_>c:=n1 QC’,O’ AN

Llet x=eing @) Wg =0

cletxz=eine ISWT’ 2

Peer Review ID: 63223950 enter this when you fill out your peer evaluation via gradescope

Exercise 1F-5. Language Feature Design, Small Step [10 points]. Extend the set of redexes, contexts and
reduction rules for the contextual-style operational semantics that we discussed in class to account for
the let command introduced above.

Peer Review ID: 63223950 enter this when you fill out your peer evaluation via gradescope

Exercise 1C. Language Feature Design, Coding. Download the Homework 1 code pack from the course
web page. Modify hwl.ml so that it implements a complete interpreter for IMP (including let and print).
Base your interpreter on IMP’s large-step operational semantics. The Makefile includes a “make test”
target that you should use (at least) to test your work. Modify the file example-imp-command so that it
contains a “tricky” terminating IMP command that can be parsed by our IMP test harness (e.g., “imp <
example-imp-command” should not yield a parse error).

Sub mi ‘(’f&e"l

/

Peer Review ID: 63223950 enter this when you fill out your peer evaluation via gradescope

1HWI1 (select all pages: your first page has your name and bookkeeping, and all others

are anonymous))
- 0 pts Correct

Peer Review ID: 63223950 — enter this when you fill out your peer evaluation via gradescope

Page 7

