Exercise 1F-2. Language Design [5 points]. Comment on some aspect from Hoare’s
Hints On Programming Language Design that relates to your programming experience. Pro-
vide additional evidence in favor of one his points and against one of his points. Do not
exceed three paragraphs. Both your ideas and also the clarity with which they are expressed
(i.e., your English prose) matter. Readers should be able to identify your main claim, the
arguments you are bringing to bear, and your conclusion.

Hints on Programming Language Design is a comprehensive review of Hoare’s thoughts
on programming design. In the introduction of the paper, Hoare explains "I fear each reader
will find some of my points wildly controversial; I expect he wil find other points that are
obvious and even boring; I hope he will find a few points that are new and worth pursing.”
I found this prediction to be correct as I read through this paper, as many of the points
rang true to my experiences with programming languages. More specifically, Hoare’s point
on prioritizing modularity over simplicity was especially pertinent. In the paper, Hoare
describes how many programming languages have focused on modularity over simplicity of
design. With this focus on modularity, many programmers only understand a portion of
the language and may accidentally access a part of the language they are not aware of by
accident, leading to to unexpected bugs. I have experienced this problem with modularity
over simplicity with Python. For the past two semesters, I have served as a graduate student
instructor for a class that utilizes Python. Since Python’s different libraries and functional-
ity are so vast, that I can only understand the portions of it relevant to the project. This
becomes problematic when trying to help students solve problems, who may have figured
out a different implementation strategy. While this strategy is still valid in Python, it may
be from a part I'm not aware of so I can not offer meaningful help to the students. With
a sprawling language like Python, modularity is often phrased as one of its benefits, but I
have found I agree with Hoare that too much of an emphasis on modularity can lead to more
problems then a smaller, simpler language.

Although I agreed with the bulk of Hoare’s paper, one of his recommendations I disagreed
with some of his assertion. One key assertion that I disagreed with is his belief that there
should be no form of automatic type transfer, except when defined by the programmer. I
understand his logic, that automatically converting types leads to possible confusion from
the programmer when this unexpected type transfer results in a bug. There is an exception
to this rule with respect to numerical representations. Often, when working with calcula-
tions, both integers and floating point data types are used in the same calculations. Under
Hoare’s recommendation, trying to add a floating point number and an integer would result
in an error, unless the programmer had explicitly cast one of the operators to be the other
type. While this could add some clarity, adding casts at every point in a complex calculation
would result in a large amount of code bloat. Python automatically casts integers to floating
point data when they are in an operation with floating point numbers, and this eliminates
the need for casts without loss of accuracy in casting a floating point digit to an integer. In
my experiences in helping students with computation heavy problems in the class I teach,

Peer Review ID: 63163035 — enter this when you fill out your peer evaluation via gradescope



removing the possibility of loss of accuracy in numeric calculations helps cut down on the
space of possible bugs. Overall, this practice of Python automatically casting a floating point
digit to an integer increases the simplicity and usability of Python, compared to if Python
did no automatic casts.

Exercise 1F-3. Simple Operational Semantics [3 points]. Consider the IMP lan-
guage discussed in class, with the Aexp sub-language extended with a division operator.
Explain what changes must be made to the operational semantics (big-step only). Write out
formally any new rules of inference you introduce.

Extend Aexp as follows:
ex=nforneZ

| e1/eq for e1,e5 € Aexp

The operational semantics must be expanded to include a rule to define what division does.
This step will describe integer division, which cuts off the decimal point values of any di-
vided value with a nonzero decimal value. This operation can be done by taking the floor
value of the numeric result of dividing the value of e; and ey. Division is only defined for
any expression e; and any expression e; where es does not evaluate to 0. Division is left
undefined for (ey, o) |} 0.

<6170> I m <€27U I ng
(e1/ea,0) | floor(ny/ns)

For ny # 0. Integer division is not defined for ny, = 0.

— |~

Peer Review ID: 63163035 — enter this when you fill out your peer evaluation via gradescope



Exercise 1F-4. Language Feature Design, Large Step [10 points|. Consider the

IMP language with a new command construct “let x = e in ¢”. The informal semantics

of this construct is that the Aexp e is evaluated and then a new local variable x is created

with lexical scope ¢ and initialized with the result of evaluating e. Then the command c is

evaluated. We also extend IMP with a new command “print e” which evaluates the Aexp

e and “displays the result” in some un-modeled manner but is otherwise similar to skip.
We expect (the curly braces are syntactic sugar):

X =1 3

y =2 ;

{ let x = 3 in
print x ;
print y ;
X :=4 ;
y : =5

|

print x ;

print y

to display “3 2 1 5”.
Extend the natural-style operational semantics judgment (c,o) |} ¢’ with one new rule

for dealing with the 1let command. Pay careful attention to the scope of the newly declared
variable and to changes to other variables.

(e o) b g paw (608 = e 4 0

(let z = einc,o) | o[z :=o(x)]

Peer Review ID: 63163035 — enter this when you fill out your peer evaluation via gradescope



Exercise 1F-5. Language Feature Design, Small Step [10 points]. Extend the set
of redexes, contexts and reduction rules for the contextual-style operational semantics that
we discussed in class to account for the let command introduced above.

Redexes

T o=

| n1 + no

| let z=n in ¢
Contexts

H:=e

|n+ H

| let x=H in ¢

Local reduction rule for let
(let £ =n in ¢,0) = {(¢;z = o(z), o[z :=n])

Peer Review ID: 63163035 — enter this when you fill out your peer evaluation via gradescope



1HWI1 (select all pages: your first page has your name and bookkeeping, and all

others are anonymous))
- 0 pts Correct

Peer Review ID: 63163035 — enter this when you fill out your peer evaluation via gradescope

Page 7



