Exercise 1F-2. Language Design

Hoare’s Hints on Programming Language Design remains strikingly relevant, even over 50 years later. One particu-
larly insightful point is his emphasis on the importance of fast compilation to provide feedback during development.
In my experience, immediate feedback is essential for productivity. Whether through fast compilers, interpreted
languages that bypass full compilation, or modern static analysis tools that highlight errors as you type, minimizing
delay accelerates iteration. For example, when I worked with Java, we kept module compilation and test times under
five seconds, and tools like IntelliJ flagged static errors within milliseconds, enabling a seamless development flow.

However, Hoare’s claim that lexing and parsing are the slowest parts of compilation is outdated. While this may
have been true in his era, advances in parsing techniques, hardware, and compiler design have shifted the bottleneck
to later stages like optimization and type checking. Modern compilers spend far more time on these phases, with
parsing typically being one of the fastest. Although complex or unconventional syntax can occasionally complicate
parsing, such cases are exceptions rather than the norm.

Hoare’s discussion of independent compilation also raises valuable points about program design. His examples us-
ing PRECOMPILE and DUMP directives anticipate the modern concept of incremental compilation. Incremental
compilation allows programmers to define boundaries based on conceptual domains rather than to minimize recom-
pilation. This approach fosters granularity and flexibility, enabling faster feedback and more efficient workflows
than strict independent compilation.

Exercise 1F-3. Simple Operational Semantics
We first extend the grammar of arithmetic expressions to include division.

e = |exe

We then define a new rule E-Div to perform big step integer division in the case that e; does not evaluate to 0.
Similarly to in class we are using n as a metavariable ranging over the integers. In the conclusion we are performing
actual mathematical integer division on n; and n,.

E-Div
(er,0) | ng (e, 0) | ny n, =0

(e1 + ez, 0) | [ny + my]

Exercise 1F-4. Language Feature Design, Large Step
We will use x as a metavariable over variables.

c ::= -|letx=einc|printe

E-LET
(e,o)ln (c,o[x:=n])l o

(let x = ein c, o) | revert(o, 0’, x)

where revert(o, 0/, x) = o’[x := o(x)] if x € o and otherwise revert(c, o/, x) = o’ \ {x}. This denotes reverting the
variable binding in x to the state in o.

Exercise 1F-5. Language Feature Design, Small Step

We will introduce an unset redex into the language to represent removing a variable from o.

r ::= - |letx=ninc|unsetx;c
H ~|letx=Hinc

Peer Review ID: 302497955 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 302497955 — enter this when you fill out your peer evaluation via gradescope

(letx =ninc,o) = (c;x = o(x),o[x := n]) where x € ¢
(let x = nin ¢,o) — {c; unset x, o[x := n]) where x ¢ o

(unset x, o) — (unset x, o \ {x}) where x € ¢

Peer Review ID: 302497955 — enter this when you fill out your peer evaluation via gradescope

