2 Language Design

I am currently working on integrating refinement types into Zélus, a synchronous programming language
designed for modeling hybrid systems by combining differential equations with discrete jumps. Our ultimate
goal is to leverage these refined types to verify hybrid system programs against their specifications during
compilation. This capability has the potential to significantly reduce costs and save lives when applied to
real-world systems, such as autonomous aerial vehicles. However, translating specifications into refinement
types is often challenging for programmers. In some cases, the system may reach undesirable states because
the programmer failed to correctly define variable subtypes. As a result, the compiler might incorrectly
verify the system as safe. As Hoare emphasized, a programming language should be designed to make
errors difficult to introduce and easy to diagnose, rather than allowing them to propagate undetected. This
principle underscores the importance of security in language design, which I agree how crucial it is. To
address these challenges, we might consider synthesizing refinement types directly from specifications. By
automating this process, programmer errors can be reduced and we can enhance the reliability of hybrid
system verification during compilation.

At the same time, I have encountered a practical limitation of Hoare’s hint on simplicity. In the syn-
chronous domain, certain specialized features, like clock refinement or temporal contracts, prove indispens-
able for describing time-sensitive behaviors. While these additions do raise the complexity of the language,
they also make it far more expressive for embedded systems or reactive applications that require guaranteed
real-time responses.

In conclusion, the process of integrating refinement types into Zélus shows the balance between simplicity,
robustness, and expressiveness in programming language design. Automating refinement type synthesis
could reduce errors and improve hybrid system verification, enhancing safety in critical applications. While
Hoare’s principle emphasizes simplicity, some features are necessary for modeling time-sensitive behaviors,
demonstrating the trade-off between complexity and practical utility in designing reliable systems.

3 Simple Operational Semantics

To extend the arithmetic expressions (Aexp) of the IMP language with a division operator(/), we first need
to extend the Abstract Syntax.
ex=nforneZ

| for x € L

| e1 + es for e1,e2 € Aexp

| e1 — eg for eq,e2 € Aexp

| e1 % e for e, es € Aexp

| e1/es for e1, e € Aexp
We keep the Bexp and Com as the same. And keeping all the evaluation rules we can add the evaluation
rules for division operator. We should take care of division by zero error as well. The second rule below

specify that if the denominator of the division is zero, the division is undefined thus by adding division we
make our system incomplete.

(e1,0) b n1 (ez,0) I ma na#0
(e1/e2,0) I ny +ny

(er,0) b n1 (e2,0) 40

(e1/e2,0) is undefined

Here + denotes the integer division.

4 Language Feature Design, Large Step

Let’s extend the natural-style operational semantics judgment {(c,o) | ¢’ with one new rule for dealing with
the let command.

Peer Review ID: 302592826 — enter this when you fill out your peer evaluation via gradescope

Questions assigned to the following page: 4 and 5

Peer Review ID: 302592826 — enter this when you fill out your peer evaluation via gradescope

(e,o) I n (c,olz:=n]) o

(let z =€ inc¢,0) | o'z :=o(z)]

Here we create a temporary state o[z := n] where x is bound to n and perform other commands ¢ based on
that information. And ¢’ denotes the state after evaluating ¢ under the temporary state. After we finish
evaluating ¢ we restore the original value of x by ¢’[z := o(x)] but we keep the other changed values in ¢’
as is.

5 Language Feature Design, Small Step
Let’s first extend the set of redexes,

ru=r x€L
| 1+ ng
|z:=n
| skip;c
| if true then ¢ else co
| if false then c; else ¢y
| while b do ¢

|[letz=ninc

Here, n represents an evaluated arithmetic expression. And we can extend the reduction rules by adding the
following rule,
(let z =nin c,0) = (¢;z := o(x), 0z :=n])

Here, we substitute the variable x and reduce the body ¢ within the new scope. After executing ¢ we add an
assignment x to recover the old value of it. And finally we can extend the contexts by adding the following
contexts to H,

H:=...|letz=Hinc

This allows reduction to occur in the evaluation of the bound expression e.

Peer Review ID: 302592826 — enter this when you fill out your peer evaluation via gradescope

