Exercise 1F-2

One thing that I found very interesting in Hoare’s paper was the discussion he had on the
various different commenting styles that existed at the time. While this section came across
as extremely dated, I found it incredibly relatable to see this discussion of how the seemingly
minor decision of how the programming language handles commenting can have ripple effects
in how people actually interface with the language. Personally, I'm a big fan of the central
idea Knuth’s literate programming style that documentation should be as much a part of
the program as the code is. And, while the commenting section does come across as dated,
I think it is still quite relevant, as there are still programming languages today that seem
to discourage organization and documentation. One example that comes to mind is that, in
Matlab, functions must occupy separate files. In my mind, all this ever seems to do is put a
barrier in the way of me making my code properly organized.

One thing that I disagreed with among Hoare’s points was the way he approached the
concept of “simplicity” in programming language design. In his paper, Hoare held up many
low-level hardware instruction sets as exceedingly simple. He claimed that this was good
because it allowed the users to have every single aspect of the system memorized. While
agree that this sort of simplicity would have this effect, I don’t agree that this is the type of
simplicity that should be desired in a programming language. Simplicity should be measured
in terms of distance to familiarity, that is how many new concepts should a programmer have
to understand in order to make use of the language. In these low-level instruction sets, the
user must be familiar with all of the gory details of the underlying implementation in order
to get anything done. In the design of Python there was a goal to have many ways to do
any one thing, but only one idomatic way. While it’s debatable whether modern Python
actually achieves this goal, I think that it is a perfect basis for a goal of language simplicity.

Exercise 1F-3

There are a number of possible ways to extend IMP with a division operator. There are two
problems that must be solved in order to define division in IMP. The first is that, in the
best case, division is only a partial function because it is undefined when the denominator
is zero. We will solve this problem by introducing the symbol L to indicate undefined and
altering our operational semantics so that arithmetic expressions may take values in ZU{ 1}
rather than just Z. The second problem is that division is not closed in the integers, that is,
the quotient of two integers need not be an integer. While we could solve this problem by
considering n/m to be undefined (by returning 1) whenever m does not divide n, we find it
more useful to preserve some information, so we will define integer division by truncation.
With the particulars decided, we now formally write out the necessary new rules of
inference. Since arithmetic expressions can now be undefined, we first need to introduce
rules to determine the behavior of all operations on undefined input. We define the following
eight rules of inference in an abbreviated style: for i € {1,2}, and ¢ € {+, —, *, /} define the

rules
(e;,0) I L
(e10e9,0) | L

Peer Review ID: 63214385 — enter this when you ﬁlb out your peer evaluation via gradescope

Similarly we define four more rules to work with boolean expressions: for ¢ € {1,2}, and
o € {<,=} define the rules
(e;,0) J L

(e10eg,0) |} false

Finally we define the rules for division itself. To handle the case when the denominator is
zero, we define the rule

(e2,0) 0
(e1/ea,0) | L

And in any other case we define integer division by truncation:

(er,0) I ny (ea,0) ymy na#0
(e1/e2,0) | [n1/na)

Exercise 1F-4
In order to handle the 1let command we introduce the following rule

(e, In (c,olx=n]) o

(let z=¢ in c,0) | o'[z = o(z)]

Note that with this rule, the command c is run with a state where z is bound to the result
of e, and any bindings ¢ makes to a location y € L,y # x are preserved, but the original
binding of z is carried forward regardless of any assignments ¢ makes.

Exercise 1F-5

We start by extending the set of redexes so that let commands may be reduced:
ri=...|let z=mn in c
We define an additional reduction rule for this redex as follows:
(let z=n' in ¢,0) — (z :=n';c;x :=n,0),
where n = o(x) was the original value of z. Finally we extend the set of global contexts:
H:=...|let z=H in c¢|let z=n in H.

This set of contexts indicates that the expression in the let statement must be evaluated
before the command can be executed.

Peer Review ID: 63214385 — enter this when you ﬁ% out your peer evaluation via gradescope

1HWI1 (select all pages: your first page has your name and bookkeeping, and all others

are anonymous))
- 0 pts Correct

Peer Review ID: 63214385 — enter this when you fill out your peer evaluation via gradescope

Page 5

