Exercise 1F-2. Language Design

While reading Hoare’s paper, one theme that struck me that some of his spe-
cific criticisms lack relevancy, but his general principles still are important for
language design.

His principles are still poignant. For example, simplicity remains important
today. The success of Python is at least partially due to its simple syntax.
U.S. government agencies have encouraged the use of ”memory-safe” languages,
which seems to mean to conduct new development using simpler languages that
abstract memory allocation away from the programmer. Simplicity also contin-
ues to motivate trends in functional programming found in languages like Haskell
or Elixir. His discussion of readability continues to be an actively-discussed topic
in software engineering, and a programming language should help support this.
While the meaning of the word seems to have changed from his paper, his focus
on ’security’, is still important in the sense that programming languages should
help users detect errors.

Some of Hoare’s advice has diminished in relevance as programming lan-
guages have advanced. His specific concerns about security seem to hinge around
lacking debugging tools in production, which could lead to reliability issues. The
issue of runtime reliability between production and development code seems to
have been addressed. He also suggests that the debugging modules may take
up too much storage space to fit on a machine. This is another issue that I
believe has been solved for the vast majority of programs. He also cautions
against an optimizing compiler as being too slow. However, compilers seem to
have improved to the point where applying a set-series of optimization passes
(for example with the -O3 flag in a C++ program) require negligible additional
compile time and do not introduce concerns with program reliability. More gen-
erally, his criticism is focused on deficiencies in Algol 60 and FORTRAN, which
have less wide-spread use these days. For example, he dedicates significant
about a page to talking about ideal comment conventions. Most programming
languages in use have found ways to incorporate both single-line comments and
multi-line comments in ways that already incorporate his points of advice.

Exercise 1F-3. Simple Operational Semantics

First, the abstract syntax will need to be updated for Aexp to include syntax for
division. Focusing on operational syntax though, the main changes are to define
two new rules of inference: one for handling division (not by zero), and a second
for handling division by zero. For handling normal (not by zero) division:

<A170> 4 v; <A270> Jvy vy 7& 0
(A1/Az,0) I v1 +v2

For handling division by 0:

(A1,0) bv1 (A2,0) 10
(A1/As, o) undefined

Peer Review ID: 302623263 — enter this when you fill out your peer evaluation via gradescope



Questions assigned to the following page: 4 and 5

Peer Review ID: 302623263 — enter this when you fill out your peer evaluation via gradescope



Exercise 1F-4. Language Feature Design, Large
Step
To capture the idea that the change from e is only applied to ¢ in a local scope,

we can define the following rule of inference. This rule concludes with the state
o’ but only after removing the local-variable x removing from itself:

(e,o) v (c,olz—]) o
(let x =einc,o) | o’ \ {z}

Exercise 1F-5. Language Feature Design, Small
Step

The grammar for redexes can be extended to capture the reduction for the let
statement:
r ::= Existing grammar rules
|letz=einc

A new local reduction rule can be added:
(let x =einc,o) = (c,olz—v]) ife—wv

However, this rule does not capture that the state o for z needs to return to
it’s prior condition from before the execution of ¢ in order to capture the local
scope. I am not sure how to represent this with small-step semantics.

The grammar for contexts can be extended to account for let through a rule
that shows that the expression e in the let statement can be evaluated in its
own context:

H:=oeo
| Existing grammar rules
|[letx = Hinc
3

Peer Review ID: 302623263 — enter this when you fill out your peer evaluation via gradescope



