Exercise 1F-2. Language Design [5 points].

One thing Hoare talks about in Hints on Programming Language Design is how important it is for a
programming language to be simple. He says it should be easy to learn in just a few days. I’ve felt this
myself when I started learning Python. Its clean and simple design made it quick to pick up, and I could
focus on solving problems instead of struggling to understand the language. This really showed me how
much simplicity helps.

Hoare also mentions that too many runtime checks, like extra debugging or security checks, can make
things more complicated than they need to be. I see his point, but in my experience, these checks are
really helpful. For example, when using Java, its strict rules and type checks have caught mistakes early
and saved me from bigger problems later. So while these checks might feel annoying during
development, they’re super useful in keeping programs safe and reliable.

To sum up, I agree with Hoare that simplicity in programming languages is important and makes a big
difference. But I think he’s wrong about runtime checks—they’re essential for catching bugs and
ensuring reliability, especially in larger, more complex projects. Without them, small errors during
development can turn into major problems in production and thus would require more cost.

Exercise 1F-3. Simple Operational Semantics [3 points].

To extend the IMP language with a division operator (/), we need to modify the big-step operational
semantics to handle division in the Aexp sub-language. The changes involve defining a new rule for
evaluating division expressions and considering edge cases like division by zero.

1. Adding a New Rule for Division: We extend the big-step semantics to include a rule for
division. This rule specifies how an expression of the form al / a2 is evaluated:

(al,o) I nl (a2,0) | n2 n2#0
(al/a2,0) |} n1/n2

o This rule says that if al evaluates to nl and a2 evaluates to n2, and n2 is not zero, then
al / a2 evaluates to nl / n2.

2. Handling Division by Zero: To account for division by zero, we add a rule that handles this case
as undefined:

(al,o) | n1 (a2,0) 0
(al/a2, o) is undefined

o This rule specifies that if a2 evaluates to 0, the result of al / a2 is undefined, as division
by zero is not allowed.

To extend the IMP language with the new command constructs let X = e in ¢ and print e, we need to
update the natural-style operational semantics to handle the new behaviors of these commands. Below,
I will define the changes needed to the operational semantics.

Exercise 1F-4. Language Feature Design, Large Step [10 points]

Peer Review ID: 302547889 — enter this when you fill out your peer evaluation via gradescope

Questions assigned to the following page: 4 and 5

Peer Review ID: 302547889 — enter this when you fill out your peer evaluation via gradescope

1. Rule forletx=einc:

The let X = e in ¢ construct creates a new local variable X, initializes it with the value of e, and then
evaluates the command c in the context where x is available. To define this in the operational semantics,
we need the following rule:

(e,o) I n (c,olz—n])| o
(letz =einc,0o) | o’

o (e, o) U n: First, we evaluate the expression e in the current state o, which gives the
value n.

o {c, o[x \mapsto n]) U ¢': We then update the state ¢ to include a new binding x =n (i.e.,
the new variable x is initialized to n). After this, we evaluate the command c in the
updated state o[x \mapsto n].

o The final result is the state ¢' after evaluating c, with x available only within the scope
of c.

This rule makes sure that the variable x is only available in the scope of ¢ and does not affect the state
outside of c.

2. Rule for print e:

The print e command evaluates the expression e and displays its result, but does not modify the state. It
behaves similarly to skip. The operational semantics for print e is given by the following rule:

(e,o) I n
(print e,o) || o

o (e, o) U n: We evaluate the expression e in the state 6, which results in the value n.

o The state ¢ remains unchanged because print only displays the result and doesn't alter
the state.

Exercise 1F-5. Language Feature Design, Small Step [10 points].

From what was given in the class, the set of redexes, contexts and reduction rules can be extended as

follows:
Step | Redex | Context | Next Step
| I I
1 |x:=1 [[x=0,y:=0] | 1skip, [x =1,y :=0]{
2 |y=2 [[x=1,y=0] | tskip, [x =1,y =2]]
3 [letx=3mn.. |[[x=1y:=2] |fprintx;printy;x:=4;y:=5,[x=3,y:=2]|
4 | print X |[x =3,y :=2] | 1skip, [x :== 3,y :=2]| (prints "3")
5 | print y |[x:=3,y:=2] | tskip, [x := 3,y :=2]| (prints "2")

Peer Review ID: 302547889 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 302547889 — enter this when you fill out your peer evaluation via gradescope

6 Ix:=4 |Bx:=3,y:=2] | fskip, [x =4,y =2]]
7 ly=5 [T =4,y :=2] | fskip, [x =4, y = 5]
8 |printx [=1,y :=5] | fskip, [x = 1,y = 5]| (prints "1")
9 |printy [=1,y :=5] | fskip, [x = 1,y = 5]| (prints "S")

Detailed Explanation, step by step is as below:
Step 1 (x :=1):

e Redex:x:=1

e Context: [x := 0, y := 0] (initial state)

e Next Step: Updates x to 1 — [x := 1,y :=0]
Step 2 (y = 2):

e Redex:y: =2

e Context: [x :=1,y:=0]

e Next Step: Updates yto 2 — [x =1,y :=2]
Step3 (letx=31in...):

e Redex:letx=31in...

e Context: [x =1,y =2]

e Next Step: Creates a new scope where x =3 — [x =3,y =2]
Step 4 (print x):

e Redex: print x

e Context: [x =3,y :=2]

e Next Step: Prints 3, no state change — [x := 3,y = 2]
Step 5 (print y):

e Redex: printy

e Context: [x :=3,y:=2]

e Next Step: Prints 2, no state change — [x =3,y :=2]
Step 6 (x :=4):

e Redex:x:=4

e Context: [x =3,y :=2]

e Next Step: Updates x to 4 in the local scope — [x =4,y = 2]
Step 7 (y =95):

e Redex:y:=5

Peer Review ID: 302547889 — enter this when you fill out your peer evaluation via gradescope

Question assigned to the following page: 5

Peer Review ID: 302547889 — enter this when you fill out your peer evaluation via gradescope

o Context: [x =4,y :=2]
e Next Step: Updates y to 5 — [x =4,y :=5]
Step 8 (print x):
e Redex: print x
e Context: [x := 1,y := 5] (local scope ends, restores outer scope)
e Next Step: Prints 1, no state change — [x =1,y := 5]
Step 9 (print y):
e Redex: print y
e Context: [x =1,y :=15]

e Next Step: Prints 5, no state change — [x := 1,y = 5]

Peer Review ID: 302547889 — enter this when you fill out your peer evaluation via gradescope

