Exercise 1F-2

In his paper, Hoare argues that efficient object code remains an objective criterion for good
language design. He mentions that while arguments about computer hardware becoming
more and more fast and efficient that efficacy loss in language design is becoming tolerable
do hold some ground in certain cases, most of the times the efficacy loss is way too severe
even for better hardware. From my experience with programming for the past few years,
I have come to the same conclusion as him on this matter. Hoare may have written this
article back in the 70s, but the fact that the tasks we need our computers to undertake
are becoming more and more advanced still holds true, and recent talks about Moore’s Law
not holding true anymore only makes the situation worse. An efficient language that can
optimize the program code well is crucial in this case.

Hoare also argues that simplicity is a crucial principle that is often replaced by some
others with the principle of modularity, which he sees as inferior. He argues that the principle
of modularity, where a programmer who does not understand the entirety of the language
can still get by with only understanding a small part of it, only works if the program written
actually works. If it doesn’t, he claims, and the programmer invoked a function of the
language he is not familiar with, the consequences will be dire. I don’t necessarily think this
is the case any longer. The advanced technology of today allows us to easily look for help
online if we find something that we do not understand while coding, like in online help sites
like StackExchange. Even if we do not understand the entirety of the language, it is easy to
find someone else who does and is willing to help.

Hoare’s paper was written almost half a century ago. The parts of his arguments that
still hold true today do so by touching on subjects that are timeless, like the need for faster
and more efficient programming. However, the world has changed dramatically since 50
years ago, and many discoveries have been made that make the other parts of his arguments
obsolete.

Exercise 1F-3

The most important thing about division is that the denominator cannot equal to zero.
Thus the second expression may not evaluate to 0. Furthermore, IMP language only uses
integers, so we need to implement integer division, which means throwing out the remainder.
Thus we need to update the rules of inference to include this:

<€1,0> anl <€2,U> HHQ#O

(o) 2]

(e,o) In (c,olz:=n]) |0’

(letx =einc, o) |0 [z := o(z)]

Exercise 1F-4

Peer Review ID: 63184849 — enter this when you fill out your peer evaluation via gradescope

Exercise 1F-5

rii=x
| n1 + no
| wi="n
| skip; ¢
| if true then c; else co
| if false then ¢y else cy
| while b do ¢
| let x=emc

(z,0) = (o(),0)

(ny +ng,0) = (n,0) where n = ny plus ns

(ny = ng,0) = (true,o) if ng =ny

(x :=n,0) — (skip,olr := n])

(skip; ¢,0) = (c,0)

(if true then ¢y else cy,0) — (c1,0)

(if falsethen cy else cy,0) — (ca,0)

(while b do ¢,0) — (if bthen c; while b do c else skip, o)
(let x =einc,olz :=n]) = (¢;x :=n,o[z =€)

H:=en+H
| H4+ ¢
| wo=H
| if H then c; else ¢y
| H; ¢
|letx =H inc

Peer Review ID: 63184849 — enter this when you fill out your peer evaluation via gradescope

1HWI1 (select all pages: your first page has your name and bookkeeping, and all

others are anonymous))
- 0 pts Correct

Peer Review ID: 63184849 — enter this when you fill out your peer evaluation via gradescope

Page 5

