Exercise 1F-2. Language Design [5 points]. Comment on some aspect from Hoare’s Hints On Pro-
gramming Language Design that relates to your programming experience. Provide additional evidence in
favor of one his points and against one of his points. Do not exceed three paragraphs. Both your ideas and
also the clarity with which they are expressed (i.e., your English prose) matter. Readers should be able to
identify your main claim, the arguments you are bringing to bear, and your conclusion.

Solution: Hoare’s description of convincing a programmer to switch languages as a nearly impossible
task exactly mirrors my own gravitation towards familiar languages. While various classes have enabled
me to work with OCaml, and internship experiences have prompted me to pick up Python, I always
default to my mother tongue (the first programming language I learned), C++. Hoare goes on to
describe how programmers have adapted to the deficits of their current programming language, just as
I have accepted the extra lines of code needed to accomplish the same task in C++ rather than Python.

Moreover, Hoare’s reverence for proper documentation should be engrained in CS coursework. Rather
than just learning about data structures and algorithms and the intracasies of a language, students should
be taught best practices for developing code that can be easily parsed by others —and their future selves.
At the introductory level I never adopted the habit of properly documenting my code; in upper level
coursework on Operating Systems, my group appended minimal comments to our code, after our entire
project was working, directly contradciting Hoare’s guidance on documenting along the way. Our group
thought our code was so clean and readable it didn’t need comments, everything seemed obvious to
us. A year later we bit our tongues, as my group members went on to become instructors for the class.
Attempting to review the projects they referred back to our code, they found a fully functioning product
with minimal and useless comments. It took more time to re-derive our previous intentions and naming
schemes, than it would have to properly document everything the first time.

While I agree with Hoare’s point on the importance of documentation and properly commenting
one’s code, I disagree with his strong preference for low level style commenting. Hoare describes how in
low level programs, comments come after an instruction, are started with a special character, and end
with the end of a line. He praises how this style of commenting is less susceptible to errors from other
techniques like using 7 /* */” to denote the beginning and end of comments. I argue instead, that the
low level style of commenting is unfit for longer comments. In both my classes and work expereience,
I’ve been required to keep all lines of code, including comments, to 80 characters maximum. This could
be unfeasible when using the low level style Hoare prefers, and attempting to write a more in depth
comment. The 80 character maximum allows programmers to easily peruse code without scrolling from
left to right, and as Hoare asserts, readability is far more important than write ability.

Exercise 1F-3. Simple Operational Semantics [3 points]. Consider the IMP language discussed in
class, with the Aexp sub-language extended with a division operator. Explain what changes must be made
to the operational semantics (big-step only). Write out formally any new rules of inference you introduce.

Solution: Since IMP only supports integers, we introduce integer division. If we divide by zero we reach
an error, else we proceed with division as normal and truncate any fractional part of the remainder.
Since we don’t have a representation of an error state, below we map division by zero to false. If there
was some sort of error state, we would replace ”false” with its representation.
(e2,0) 4 0

Divide by zero: (e1/es, o) | false

(e1,0) U n1 (ez,0) dna (—(e2=0),0) | True
Integer division : (e1/e2,0) | |n1/ns]

Exercise 1F-4. Language Feature Design, Large Step [10 points]. Consider the IMP language
with a new command construct “let x = e in ¢”. The informal semantics of this construct is that the Aexp

Peer Review ID: 302543792 — enter this when you fill out your peer evaluation via gradescope

Questions assigned to the following page: 4 and 5

Peer Review ID: 302543792 — enter this when you fill out your peer evaluation via gradescope

e is evaluated and then a new local variable x is created with lexical scope ¢ and initialized with the result
of evaluating e. Then the command c is evaluated. We also extend IMP with a new command “print e”
which evaluates the Aexp e and “displays the result” in some un-modeled manner but is otherwise similar
to skip.

We expect (the curly braces are syntactic sugar):

~
[Er
0]
ct
»
[}
w
"
=

1
print x ;
print y

to display “3 21 5”.

Extend the natural-style operational semantics judgment (¢, o) || ¢’ with one new rule for dealing with
the let command. Pay careful attention to the scope of the newly declared variable and to changes to other
variables.

(z,0) b zo (e,o)In (c,olz:=n])|o

Solution: (let =ein c,0) | o'[z := x¢)

Exercise 1F-5. Language Feature Design, Small Step [10 points]. Extend the set of redexes,
contexts and reduction rules for the contextual-style operational semantics that we discussed in class to
account for the let command introduced above.

Solution: We extend the redexes to also include:
ru=lety :=ninc
Then we extend the reduction rules to include:

(lety :==ninc,0) = (y:=n;c;y = oly|,o0)

Exercise 1C. Language Feature Design, Coding. Download the Homework 1 code pack from the
course web page. Modify hwil.ml so that it implements a complete interpreter for IMP (including let and
print). Base your interpreter on IMP’s large-step operational semantics. The Makefile includes a “make
test” target that you should use (at least) to test your work.

Modify the file example-imp-command so that it contains a “tricky” terminating IMP command that can
be parsed by our IMP test harness (e.g., “imp < example-imp-command” should not yield a parse error).

Solution: See autograder

Peer Review ID: 302543792 — enter this when you fill out your peer evaluation via gradescope

No questions assigned to the following page.

Peer Review ID: 302543792 — enter this when you fill out your peer evaluation via gradescope

Submission. Turn in the formal component of the assignment (1F-1 through 1F-5) as a single PDF
document via the gradescope website. Your name and Michigan email address must appear on the first
page of your PDF submission but may not appear anywhere else. Turn in the coding component of the
assignment (1C) via the autograder.io website.

Peer Review ID: 302543792 — enter this when you fill out your peer evaluation via gradescope

