Exercise 1F-2. After reading Hoare’s Hints on Programming Language Design, I am
astonished at how well it holds up. Almost all of the recommendations should still be heeded
by language designers today. Much of his advice was subsequently followed, to the benefit of
modern languages (e.g. comment conventions, context free grammars, operator overloading,
avoidance of pointers, case statements, type systems, variable scoping, and more). Some of
his advice has been ignored by some languages, but it is generally to their detriment (e.g.
lack of type system in Javascript, C++ not being context free, Python ignoring performance
because computers are fast). Seeing that so many PL design principles were already under-
stood in 1973 makes me question why a language like javascript even exists.

The piece of advice I like the most is that features should not be added just because they
are easy to implement or a clever use of the orthogonality of other features. He warns that
these features will be abused by clever programmers at the cost of understandability. I have
seen this frequently with C++ with features such as overloading the function call operator.
C++ is full of examples of things which seem elegant at the surface, but which rely under
the hood on clever language features that make them incomprehensible as soon as you try
to predict how they will work in edge cases.

My main criticism is that I think Hoare overemphasizes simplicity. Simplicity is a noble
goal, but he prioritizes simplicity above everything, and I think this is a mistake. The
essence of building a useful language is accepting good trade-offs; if the benefit of com-
plexity is large enough, giving up simplicity may be justified. An example of this is Rust’s
memory management system. It adds complexity that makes Rust much harder to learn and
much harder to prototype in, but it is nonetheless a good trade-off. It was only implemented
after decades of experience with the dangers of manual memory management in C and C++.
With experience and hindsight, programmers have decided that the complexity of a borrow
checker is far outweighed by the usefulness of it’s memory safety guarantees. In general,
once a domain is well enough understood, it is possible to give up simplicity in the areas
where complexity is most helpful. Type systems are another example of a good tradeoff.
Hoare argues for the the use of type systems, but he does not generalize this to other good
tradeoffs. This is understandable, because Hoare could not rely on the decades of software
development hindsight that choosing good tradeoffs requires, but I think it is a place the
paper does not hold up as well.

Exercise 1F-3. To extend IMP with a division operator, we just need to add a division

operator ”/” to the syntax, and add an appropriate inference rule to define it’s semantics.
Since division by zero is not defined for integer division, we will decide to define it as zero.

Peer Review ID: 302635394 — enter this when you fill out your peer evaluation via gradescope

Questions assigned to the following page: 3, 4, and 5

Peer Review ID: 302635394 — enter this when you fill out your peer evaluation via gradescope

”/” means integer division.

<€170> g (62,0> 1 no
(e1/e9,0) || if ny = 0 then 0 else ny/ny

Exercise 1F-4.
(e,o) yn (c,olx:=n]) |

(let x =e in ¢,0) |} o[z := o[z]]

Exercise 1F-5.

Redexes:
r o=

...old redexes...
|let z =ninc

Contexts:
H &=

...old contexts...
|let z=Hin ¢

New Reduction Rule:
(let x =ninc,o) = (x:=n;c;z:=olz],0)

Peer Review ID: 302635394 — enter this when you fill out your peer evaluation via gradescope

