All subsequent answers should appear after the first page of your submission and may be
shared publicly during peer review.

Exercise 1F-2. Language Design [5 points]. Comment on some aspect from Hoare’s
Hints On Programming Language Design that relates to your programming experience. Pro-
vide additional evidence in favor of one his points and against one of his points. Do not
exceed three paragraphs. Both your ideas and also the clarity with which they are expressed
(i.e., your English prose) matter. Readers should be able to identify your main claim, the
arguments you are bringing to bear, and your conclusion.

Answer 1F-2. Hoare argues that fast translation is one of the criteria for good language
desing, which is reasonable. I agree with that, because fast translation saves time in pro-
gramming development and debugging. Few programmers could know the compilation result
for sure because of the length and complexity of the code. Most of programmers need com-
pile the code first and then debug. The waiting time while the code is being compiled is
most probably wasted.

But from Hoare’s point of view, independent compilation is a poor substitute for fast
translation. I cannot agree with this point. First, independent compilation is not a substitute
for fast compilation. They can exist in the same time for different purposes. Independent
compilation not only enables programmers to only recompile parts of their program but also
encourages compiled libraries to be reused. Moreover, fast translation is not achievable with-
out independent compilation nowadays. Translating 27.8 million lines of code in the linux
kernel requires an enormous effort. It is not enough only using the three techniques Hoare
suggested, prescaning, precompilation and dum. For example, the technique of precompi-
lation is effective only on single-pass compilers. However, multi-pass compilers is widely
used today. Since the multiple passes include a modular structure, and the code genera-
tion decoupled from the other steps of the compiler, the passes can be reused for different
hardware /machines.

In conclusion, I agree that fast translation is an important creterion for programming
language but I doubt Hoare’s argument in fast translation. Independent compilation is also
a good practice for fast translation.

Exercise 1F-3. Simple Operational Semantics [3 points]. Consider the IMP lan-
guage discussed in class, with the Aexp sub-language extended with a division operator.
Explain what changes must be made to the operational semantics (big-step only). Write out
formally any new rules of inference you introduce.

Answer 1F-3. I added two rules for the division operator, because division by zero is
undefined.
When ns # 0,
<€1,0> I <€2,U> I ny
(61/62, U> I nl/n2

2

Peer Review ID: 63255784 — enter this when you fill out your peer evaluation via gradescope

When the divisor evaluates to zero,

(er,0) I ny (ez,0) 0

(e1/e9,0) || ZeroDivisionError

Exercise 1F-4. Language Feature Design, Large Step [10 points]. Consider the

IMP language with a new command construct “let z = e in ¢”. The informal semantics

of this construct is that the Aexp e is evaluated and then a new local variable x is created

with lexical scope ¢ and initialized with the result of evaluating e. Then the command c is

evaluated. We also extend IMP with a new command “print e” which evaluates the Aexp

e and “displays the result” in some un-modeled manner but is otherwise similar to skip.
We expect (the curly braces are syntactic sugar):

e
|
'_\

i
print x ;
print y

to display “32 1 5"

Extend the natural-style operational semantics judgment (c,o) |} ¢’ with one new rule
for dealing with the let command. Pay careful attention to the scope of the newly declared
variable and to changes to other variables.

Answer 1F-4. let command assigns a value to a local variable, which is effective during
the command c. After the command ¢, the local variable will not hold the value any more.
The value of the variable name will restore to the state before this let statement but other
effects of the command ¢ will still remain.

The added rule is
(e,oy dn (c,olx:=n]) | o
(let x =e inc,0) || o[z := o(x)]

Exercise 1F-5. Language Feature Design, Small Step [10 points]. Extend the set
of redexes, contexts and reduction rules for the contextual-style operational semantics that
we discussed in class to account for the 1let command introduced above.

3

Peer Review ID: 63255784 — enter this when you fill out your peer evaluation via gradescope

Answer 1F-5. An expression is added to the set of redexes.
o= .| lE WE=H N

Nothing is added to the set of contexts. Because firstly let statement is reduced to three
statements, which can be further reduced.
Added reduction rule:

(letx =minc,0) = (r:=n;cz :=o(x),0),

where o is the state before let command. Then, we can use other reduction rules to process
the expressions.

Exercise 1C. Language Feature Design, Coding. Download the Homework 1 code
pack from the course web page. Modify hwl.ml so that it implements a complete interpreter
for IMP (including let and print). Base your interpreter on IMP’s large-step operational
semantics. The Makefile includes a “make test” target that you should use (at least) to
test your work.

Modify the file example-imp-command so that it contains a “tricky” terminating IMP
command that can be parsed by our IMP test harness (e.g., “imp < example-imp-command”
should not yield a parse error).

Submission. Turn in the formal component of the assignment (1F-1 through 1F-5) as a
single PDF document via the gradescope website. Your name and Michigan email address
must appear on the first page of your PDF submission but may not appear anywhere else.
Turn in the coding component of the assignment (1C) via the autograder.io website.

4

Peer Review ID: 63255784 — enter this when you fill out your peer evaluation via gradescope

1HWI1 (select all pages: your first page has your name and bookkeeping, and all others

are anonymous))
- 0 pts Correct

Peer Review ID: 63255784 — enter this when you fill out your peer evaluation via gradescope

Page 6

