Exercise 1F-2

Though it was written nearly 50 years ago, much of Hoare’s Hints on Pro-
gramming Language Design still feels strikingly relevant. The three pillars
of programming are still design, documentation, and debugging, and I feel
like some aspects of programming would be easier if programming languages
did a better job of supporting these pillars (especially documentation and
debugging).

One of Hoare’s opinions that I support is his general dislike of programs
that provide large data structures with built-in operations. He reasons that
the optimal implementation of a data structure may be different for different
use cases, but that including a built-in data structure that is significantly
easier to program with (as a language feature) will shoe-horn programmers
into using it even if it isn’t optimal. He says that one solution to this problem
would be “extensible” languages, which were generally unsuccessful at the
time. Nowadays, however, I see C++ as a great example of such an extensible
language. The only language-defined types in C++ are the primitives — the
rest of the standard library is defined by the Standard in terms of interface,
not implementation. The implementation of vector, for example, is made
to be incredibly efficient by those who implement the standard. But there’s
nothing special about vector at a language level; it’s easy for a programmer
to define their own data structures that are as easy to use as ones in the
standard library, because any user-defined class can be made to work with
the same functions/operators as standard library types.

However, I disagree with Hoare on the matter of pointers/references. He
seems to despise them, since they allow for arbitrary assignment to any store
location whatsoever. In fact, he remarks that: “Their introduction into
high level languages has been a step backward from which we may never
recover.” It might just be my limited perspective talking, but I can’t imagine
computer science without pointers/references. So much of optimal C++ code,
for example, requires using references and move semantics to not constantly
be copying data. And pointers give rise to a number of data structures and
algorithms that would otherwise be much less efficient. References/pointers
can be dangerous, yes, but I still see them as somewhat fundamental.

Peer Review ID: 63202635 — enter this when you fill out your peer evaluation via gradescope

Exercise 1F-3

There are two special considerations that need to be made when it comes to
the division operator:

First, division between integers can (in mathematics) create non-integer
results. However, I don’t particularly want to add non-integer numbers to
IMP. So the division I implement will be akin to division between integers
in most typed languages: it will result in an integer that is the floor of the
division operation.

Second, dividing by zero is undefined. I feel, though, like all control
paths should be defined by the rules (even if they result in error). But if
I introduced a new possible value of Aexp, like undef, then I would need
to add new rules for all of the different arithmetic and Boolean expressions
to accommodate the cases where (e, o) || undef. While doable, that would
explode the complexity of IMP in a very unpleasant way. Therefore, I've
decided to define that dividing by zero results in zero. This may be “wrong,”
but dividing by zero is an undefined operation anyway, so I think it’s fine.
The new rules I introduce are:

(e =0,0) || false (e1,0) | ny (eq,0) | ny (e2 =0,0) || true
(e1/ez,0) | [n1/n2) (e1/e2,0) I 0

Exercise 1F-4

Our one new rule for the let command is:

(z,0) I n (x:=e,0)0d (c,d)|o”

(letz=einc,o0) | o[z :=n]

Broadly, this rule indicates that the let command should run ¢ on a state
o', where ¢’ is the result of running x := e on o. After running ¢ on ¢’ to
obtain ¢”, the value of z in this state is replaced with whatever value it had
before the call to let.

Exercise 1F-5

We don’t need any additional contexts, since the let statement will always
be matched with the context H = e based on our added redex. We modify

Peer Review ID: 63202635 — enter this when you fill out your peer evaluation via gradescope

the redexes by adding:
P = s | Lot @ =eing
And we add the local reduction rule:
{let & = eine o) = (& = ages i—o(g),o)

Obviously, when using this rule, o(z) is evaluated as whatever z’s value is
in the current state. This performs the same operations as were described
in the previous problem; setting x to its new value/expression, running the
command, and then setting x back to its original value.

Peer Review ID: 63202635 — enter this when you fill out your peer evaluation via gradescope

1HWI1 (select all pages: your first page has your name and bookkeeping, and all

others are anonymous))
- 0 pts Correct

Peer Review ID: 63202635 — enter this when you fill out your peer evaluation via gradescope

Page 6

