Exercise 1F-2. Language Design [5 points].

1. Comments related to my experience: The paper presents some objective criteria for
evaluating programming language (PL) design and overall resonates with my general
view towards programming language design, underlining the importance of simplicity.
Having worked primarily with systems programming languages through the Michigan
curriculum and being exposed to the functional paradigm in my research, I definitely
believe that mathematical reasoning and simplicity are the key features that influence
my affinity for a particular language.

2. Having a rich and simple type system has saved me countless hours of debugging
compared to the dark side. 1 also agree with the point that program structure and
readability are of utmost importance, specifically when working with large codebases
and teams. Having a unified standard and readable code simplifies the onboarding
process and makes code quality control easier, saving money at the most expensive
part of software production, i.e., human hours.

3. However, I believe machine independence and the use of familiar notions are still
important if you want to build things that can run anywhere and not only on a specific
machine. This also helps in growing a community as a programming language designer,
which then leads to a vibrant community of tooling and support around it, which are
overlooked quality-of-life improvements and can go a long distance in making your
programs more accessible and reproducible.

Exercise 1F-3. Simple Operational Semantics [3 points].

1. To add support for the division operation on numbers, I have added its corresponding
inference rule that informs us of the required premises to carry out division safely.

2. First, we evaluate both the operands with the same starting state (o). Then, a premise
checks that the divisor is not zero. The quotient (n), in this case, should actually be
the result of division from using our mathematical intuition (written in the style of
EECS 490).

(ag, o) | ng (ay,0) J ny ny #0 no = ny = n(ambient math)

(ao/al,o) an

Exercise 1F-4. Language Feature Design, Large Step [10 points].

1. Here, the restore function is used to restore the value of x from its previous state (o)
to account for possible shadowing. Initially, I had 2 rules that split this condition into
separate cases, but I realized I needed a single rule that covered both cases.

Peer Review ID: 302594828 — enter this when you fill out your peer evaluation via gradescope



Questions assigned to the following page: 4 and 5

Peer Review ID: 302594828 — enter this when you fill out your peer evaluation via gradescope



LET
(e,0) I n (c,o[x:=n]) | o

0" = restore(c’, x, 0(x))
(let x = e in c,0) | o

Exercise 1F-5. Language Feature Design, Small Step [10 points].

PE=.e|lebx=0ine
H:=...|letx=Hinc
rules :=...| (let x =nin ¢,0) = {c[x := n];0)

where n is substituted for x in lexical scope of ¢

Peer Review ID: 302594828 — enter this when you fill out your peer evaluation via gradescope



