Exercise 0F-2. Set Theory [5 points]. This answer should appear after the first page
of your submission and may be shared during class peer review.

This exercise is meant to help you refresh your knowledge of set theory and functions.
Let X and Y be sets. Let P(X) denote the powerset of X (the set of all subsets of X'). There
is a 1-1 correspondence (i.e., a bijection) bewteen the sets A and B, where A = X — P(Y)
and B = P(X xY). Note that A is a set of functions and B is a (or can be viewed as a) set
of relations. This correspondence will allow us to use functional notation for certain sets in
class. This is Exercise 1.4 from page 8 of the Winskel textbook.

Demonstrate the correspondence between A and B by presenting an appropriate function
and proving that it is a bijection. For example, you might construct a function f: B — A
and prove that f is an injection and a surjection.

We define our function f(b)(x) = a(x) = {y|(z,y) € b} on B — A. Conceptually, given
b, an element of B, we map it to a, an element of A, which is a function that outputs some
power set of Y for every input x in X. Since B is the power set of X x Y, each b is simply a
set of (x,y) pairs. a on input x” will look at all the (x,y) pairs in b and will output all y such
that (x’,y) is a pair in b. If there are no pairs that contain x’, then it outputs the empty
set, which is also an element of P(y). We need to show that this is injective and surjective
to prove that is a bijection.

For injectivity, we must show that given by,by € B such that f(by)(z) = f(b2)(x), then
by = by. We do this as follows. If f(b;)(x) = f(b2)(x), then for any ' € X, f(b))(2') =
f(ba)(z"). Call this output py where py is an element in the powerset of Y. This means, by
definition of f, for each y’ in py, (2/, ') is a pair in b; and by as otherwise that y’ would not
be in the output of the function for x’. Additionally, for every y’ in Y but not in py, (z/,v’)
is not a pair in b; and by as otherwise that y’ would be in the output of the function for x’.
This means that since the functions f(b;)(x) and f(by)(x) are the same, b; and by consist of
the same pairs which means b; = by and we have shown injectivity.

For surjectivity, we must show that for any a(z) € A, there exists b € B such that
f(b)(x) = a(x). We show this as follows. For any a(z) € A, we construct b as a set of
pairs. To do this, we iterate through each z’ € X. For each x’, we run a(x’)=py, where py
is an element of the power set of Y. Then, for each 3y € py, we add (x’,y’) to b. Once this
is done, we see that b contains all the pairs (x,y) such that y € a(z) by definition, which
means f(b)(x)=a(x). This means we have show that f(b)(x) is surjective.

Since we have shown that f(b)(x) mapping B to A is injective and surjective, this means
it is bijective, and A and B are bijections of each other.

2

Peer Review ID: 62051807 — enter this when you fill out your peer evaluation via gradescope



Exercise OF-3. Model Checking [10 points]. This answer should appear after the first
page of your submission and may be shared during class peer review.

Download the CPAChecker software model-checking tool using the instructions on the
homework webpage. Read through enough of the manual to run the tool on the tcas.i
testcase provided on the homework webpage. Check the three properties given. For each
command, copy or screenshot the last ten non-empty lines of output from CPAChecker and
include them as part of your answer to this question.

It is your responsibility to find a machine on which CPAChecker works properly (but feel
free to check the class forum if you are getting stuck).

Hint: CPAChecker 2.0 should find a violation for Propertyla, verify that Property1lb is
safe, and find a violation for Property2b. If your output does not match that and you are
using version 2.0 then you may not have not set things up correctly.

What is going on when you run CPAChecker using the commands listed? In at most three
paragraphs, summarize your experience with the CPAChecker tool. What does Propertyla
mean? Is tcas.i a reasonable test suite?” What has been proved? Did you find CPAChecker
to be a usable tool? You may find the graphical reporting option of CPAChecker to be
helpful here. For full credit, do not restate my lecture on counter-example guided abstraction
refinement; instead, discuss your thoughts and experience using this tool. Focus on threats
to validity (e.g., imagine that you were writing a paper and using this as an experiment)
over usability.

Both your ideas and also the clarity with which they are expressed (i.e., your English
prose) matter. A reader should be able to identify your main claim, the arguments you are
making, and your conclusion.

When running these commands, CPAChecker uses the specification provided (propertyla,
1b, 2b) to check the program and make sure the spec is not violated; here the program in
use is the tcas.i Traffic Collision and Avoidance System. While running, CPAChecker will
look to see if there is an execution path that results in the specification being violated. If
it doesn’t find one, the program passes the specification. If it does find one, it will look
for variable assignments that form a counter-example which show how the specification can
be violated. In the given specifications, it looks like CPAChecker is looking for a path that
leads to a specifically labelled error. For propertyla, this is the error on line 1965 of tcas.i
which has the label ”propertyla”. Similarly, the spec for propertylb will look to see if the
error labelled ”propertylb” is reachable and for property2b, it will look to see if the error
labelled ”property2b” is reachable. Specifically, the error labelled propertyla is reached if
up_separation >= thresh and down_separation < thresh and need_downward_RA is true.

Based on the results using CPAChecker 1.6.1, it looks like propertyla and 1b are not vio-
lated while 2b is violated. The tool has proven that there is a set of arguments that lead to
propertylb being violated, i.e. there is a sequence of arguments that leads to the execution
path ending at the error labelled ”propertylb”. The system also claims that propertyla and

3

Peer Review ID: 62051807 — enter this when you fill out your peer evaluation via gradescope



propertylb are not violated, that is, the errors with those labels are never reached. Now,
based on discussion on the Piazza forum, it seems CPAChecker 2.0 DOES find a path that
violated propertyla, so saying that the system has ”proven” propertyla cannot be violated
is a bit of a strong term. I am personally a bit concerned about this, since based on what we
learned in lecture and in the papers so far, it seems false positives are more of a concern and
false negatives don’t usually exist. This means that either propertyla is a false negative in
CPAChecker 1.6.1 which is bad as this is something that would slip past a programmer, or
in CPAChecker 2.0 it is a false positive. As a false positive, it is something the programmer
can manually check, but its concerning that a newer version of the tool would have more
false positives. Based on this, I think tcas.i is a good test case (though it’s nowhere near
comprehensive as we're only checking a very limited set of features using the three speci-
fications). The fact that over different versions of CPAChecker propertyla acts differently
indicates that its a good test case to analyze the behaviour and performance of CPAChecker.
I would like to compare the output from version 2.0 to see if this is a false positive or negative.

I think CPAChecker is good tool considering it evaluated these properties very quickly and
for the violation of property2b, it created a counterexample that clearly states the variable
values that lead to the error. Even if this is a false positive, the developers can test these
values out and follow the execution path that CPAChecker has drawn out to confirm whether
or not it is a false positive. The drawn out CFGs are very nice as well for following along,
though I feel that it may be hard to follow at times for very large programs. I think it is a
usable tool that does its job well, though in the future, perhaps providing a GUI option as
well allowing for quicker analysis and incorporation of the CFGs generated will be extremely
helpful. However, some of the issues mentioned earlier regarding propertyla concern me
about the tool, but it does seem to prove a good amount of detail to reproduce its findings
for counterexamples and is an efficient model checker.

Below are the screenshots of the output from CPAChecker 1.6.1

4

Peer Review ID: 62051807 — enter this when you fill out your peer evaluation via gradescope



mp and JFact

Figure 3: CPAChecker output for property2b shows there is a violation

5

Peer Review ID: 62051807 — enter this when you fill out your peer evaluation via gradescope



1HWO
- 0 pts Correct

Peer Review ID: 62051807 — enter this when you fill out your peer evaluation via gradescope

Page 7



