Exercise OF-2. Set Theory

Let us define a function f : B — A. For a given set of pairs b € B, we will
define f(b) as the function f(z € X) = {y|(z,y) € b}. We will now show that
f is injective.

1.
2.

o P o= D

Let us define b1,bs € B, such that f(b1) = f(b2).

V(z,y) € b1y € f(b1)().

f(b1) = f(b2) = [f(b1)(z) = f(b2)(2) = V(=,y) € bry € f(b2)(2).
Y(x,y) € b1y € f(ba)(z) = (z,y) € ba.

V(x,y) € b1.(x,y) € by = by C bs.

We can trivially reverse by and by to show that bs C by. This means
b1 = ba, therefore f(by) = f(ba) = by = ba, therefore f is injective.

We will now show that f is surjective:

1.
2.

Let us define a function a : X — P(Y) € A.

We construct a set b = |J {z} x a(x). In other words, a set of all pairs
reX
(z,y) such that z € X,y € a(x).

For every pair (z,y) € b, y € Y, since it is an element of a member of a’s
codomain - P(Y).

. For every pair (z,y) € b,z € XAy eY = (x,y) € X xY. Conse-

quently, b € B.

f(b) yields a function f'(z € X) = {y|(z,y) € b}. As established, Vy €
b.y € Y. Therefore, the codomain of f’ is a subset of P(Y). And by our
construction of f’, the domain of f’ is X.

Therefore, f': X — P(Y) = f' € A. Thus, Va € A.3b € B.f(b) = a,
and f is surjective.

As f is both surjective and injective, it is bijective. Thus, there does exist a
bijective function f : B — A, which implies a correspondence between A and

B.

Peer Review ID: 62085566 — enter this when you fill out your peer evaluation via gradescope



Exercise OF-3. Model Checking

If my understanding is correct, when CPAChecker is run on tcas.i, it interprets
the program incompletely, abstracting the real values of variables involved into
true or false predicates about their values. Let’s examine testing property la
as an example. In this test, we error if Up_Separation is greater than or equal
to thresh and Down_Separation is less than or equal to thresh - these are
our relevant predicates. In addition, Property la is only tested in one branch,
reachable through the passage of a number of conditions, which depend on
global variables such as Own_Tracked_Alt - each of these conditions becomes
a check for an additional predicate. For CPAChecker to report a failure when
testing Property la implies that the predicates Up_Separation >= thresh and
Down_Separation < thresh could not be proven to be true simultaneously in
property la’s control flow - meaning that it was possible that said property
does not always hold. For other properties that do not fail however, such as
1b, CPAChecker’s result is stronger. We prove, to the extent of CPAChecker’s
understanding of the program, that an incorrect program state as defined by
property 1b is not reachable.

However, for a number of reasons, I do not consider this result to be terribly
useful. tcas.iis a weak test case for this tool, and ultimately I don’t think we’ve
proved anything terribly interesting. As it happens, most of the properties
tested are global variables that are never written to after initialization, and
they are initialized to the verifier as non-deterministic values. The program
has no loops, simple logic, and minimal mutation of variables. Ultimately,
the results we get are more the assessment of how a few random numbers fit
together than a useful exploration of complex behavior. This may be a weakness
of tcas.i specifically - there are essentially no constraints on the numbers the
properties are testing, as far as I can tell, and they are never mutated, so our
results depend less on the actual program behavior than on how some numbers
are initialized. It could also be interpreted as a weakness of verification tools
like CPAChecker in general. Since we don’t prove failure, only fail to prove
success, a small ambiguous programs like tcas.i’s failure on some property could
have pretty high odds of being a false positive. Perhaps in a real system the
global variables each property is testing fall into relatively clear ranges, or have
certain patterns that would realistically preclude a failure from ever occurring.
Or, perhaps the failures reported are real concerns. It’s impossible to know,
since we never showed CPAChecker the rest of the system or gave it better
constraints. Ultimately, I don’t think CPAChecker is being used to its full
potential on tcas.i. Its strengths would probably be better-shown on a larger,
more complex program, where values go through many more operations and
predicate values are informed more by the program logic than random starting
conditions.

Peer Review ID: 62085566 — enter this when you fill out your peer evaluation via gradescope



Figure 1: CPAChecker results for Propertyla.spc

Parsing CFA from file(s) "tcas (CPAchecker.parse, INFO)

Using predicate analysis with MathSAT5 version 5.6.5 (63ef7602814c) (Nov 9 2020 09:01:58, gmp 6.1.2, gcc 7.5.0, 6U4-bit,
reentrant) and JFactory 1.21. (PredicateCPA:PredicateCPA.<init>, INFO)

Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy. (PredicateCPA:PredicateCPA
Refiner.<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)
Stopping analysis ... (CPAchecker.runAlgorithm, INFO)
Verification result: FALSE. Property violation (error label in line 1963) found by chosen configuration.

More details about the verification n can be found in the directory "./output".
Graphical representation included in the file "./output/Counterexample.l.html".

Figure 2: CPAChecker results for Propertylb.spc

CPAchecker 2.0 / predicateAnalysis (OpenJDK 64-Bit Server VM 14.0.2) started (CPAchecker.run, INFO)

Parsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

Using predicate analysis with MathSAT5 version 5.6.5 (63ef760281u4c) (Nov 9 2020 ©9:01:58, gmp 6.1.2, gcc 7.5.0, 64-bit,
reentrant) and JFactory 1.21. (PredicateCPA:PredicateCPA.<init>, INFO)

Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy. (PredicateCPA:PredicateCPA
Refiner.<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)
Stopping analysis ... (CPAchecker.runAlgorithm, INFO)
Verification result: TRUE. No property violation found by chosen configuration.

More details about the verification run can be found in the directory "./output".
Graphical representation included in the file "./output/Report.html".

Figure 3: CPAChecker results for Property2b.spc

CPAchecker 2.0 / predicateAnalysis (OpenJDK 64-Bit Server VM 14.0.2) started (CPAchecker.run, INFO)

Parsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

Using predicate analysis with MathSAT5 version 5.6.5 (63ef760281uc) (Nov 9 £ 8, gmp 6.1.2, gcc 7.5.0, 64-bit,
reentrant) and JFactory 1.21. (PredicateCPA:PredicateCPA.<init>, INFO)

Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy. (PredicateCPA:PredicateCPA
Refiner.<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)

Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

Verification result: FALSE. Property violation (error label in line 1997) found by chosen configuration.
More details about the verification run can be found in the directory "./output"
Graphical representation included in the file "./output/Counterexample.l.html"

Peer Review ID: 62085566 enter this when you fill out your peer evaluation via gradescope



1HWO
- 0 pts Correct

Peer Review ID: 62085566 — enter this when you fill out your peer evaluation via gradescope

Page 6



