© LN C AW N R

W oW oW oW W W W NNNNNNNNNNE R R BB R e e e
O Ak W N R O © 0O OR WN R O ®© KNG WN RO

© 0 N O s W N R

src/main.rs:

use
use
use

fn m

itertools::Itertools;
std::fs::File;
std::io::{BufRead, BufReader};

ain() -> Result<(), failure::Error> {

// The /usr/share/dict/words file %is provided by the wbritish and wamerican packages on Ubuntu,

// and by the miscfiles package on Gentoo.
let file = File::open("/usr/share/dict/words")?;
let reader = BufReader::new(file);

for line in reader.lines() {
let word = line?;

let counts = word.chars()
// Group sequences of the same character into runs.
.group_by(lel| *el)
// Consume the iterator.
.into_iter()
// Count how often the same character occurs per run.
.map (| (key, group)| (key, group.count()))
// We have to collect the results in order to apply a moving window.
.collect: :<Vec<(char, usize)>>();

if counts
// Look at consecutive triplets.
.windows (3)
// Check if all of them occur twice.
.map(|counts| counts.iter().all(|(_, count)| *count == 2))

// If any window has a triplet where all of them occur twice, then show the word.

.any(lell| el) {
println! ("{}", word);

}

}

0(0)
}
Cargo.toml:
[package]
name = "bookkeeper"
version = "0.1.0"
authors = ["S.J.R. van Schaik <stephan@synkhronix.com>"]
edition = "2018"
[dependencies]
failure = "0.1"
itertools = "0.10"

Peer Review ID: 62040661 — enter this when you fill out your peer evaluation via gradescope

2

2 Set Theory [5 points]

Let X and Y be sets. Let P(X) denote the power set of X, i.e. the set of all subsets of X. There is a one-to-one
correspondence, i.e. a bijection, between the sets A and B, where A = X — P(Y) and B = P(X x Y). Note that
A is a set of functions, and that B can be viewed as a set of relations.

Demonstrate the correspondence between A and B by presenting an appropriate function and proving that it is a
bijection. For example, you might construct a function f : B — A and prove that f is an injection and a surjection.

Let us construct a function f : A — B and prove that it is bijective. We can either prove this by: a) proving that
the function f is both injective and surjective b) proving that the function f is invertible. More specifically, the
type of the function fis f: (X — P(Y)) — P(X xY). We choose f as follows:

fla) ={(z,y) | y € a(2)}

a) Injectivity:
Let f be a function whose domain is a set A. The function f is said to be injective provided that for all a
and b in A, whenever f(a) = f(b), then a = b. That is, f(a) = f(b) implies a = b.
Symbolically, we can express the above as: Va,b € A, f(a) = f(b) =>a=1b

More specifically, our function f is injective if for all a; € A and as € A, whenever f(a1) = f(az2), then
a1 = as. Let a1 and ag be arbitrary elements of the set A, and assume f(a1) = f(az2). Then, by definition of

f:

{(@9) [y ca(x)} ={(z,9) | y € az(2)}

We now proceed to use the aziom of extensionality in set theory, which states that two sets are equal if they
have exactly the same elements. If we apply this axiom to the two aforementioned sets, then we find that for
any (x,y), whenever y € ay(x), we also have y € as(z). By applying the aziom of extensionality to ai(x) and
az(x), we find that they must be equal sets. This is because for all y, they either both contain that same y, or
they both do not contain that same y. Therefore, for any x, a1 (z) = az(x). Thus, as both functions agree on
all arguments and by the definition of function, both a; and ay are equal functions. Therefore f is injective.

Surjectivity:
A function is said to be surjective provided that its image is equal to its codomain. Equivalently, a function f
with domain A and codomain B is surjective, if for every b in B there exists at least one a in A with f(a) = b.

Symbolically, we can write this as follows: consider the function f: A — B, then f is said to be surjective if:
Vbe B,Ja€ A, f(a)=0b

Let b be an arbitrary element of B. Therefore, by the definition of B above, b € P(X X Y') where every
element of b is of the form (x,y) with x € X and y € Y. We now construct an a, such that f(a) = b. By
defintion of f, f(a) = {(z,y) | y € a(x)}. Thus, we pick our function a by letting a(x) = {(z,v) | (z,y) € b}.
Through substitution, we then find that f(a) = {(z,y) |y € {y | (y | (z,y) € b}} simplifies to f(a) = {(x,y) |
(z,y) € b}. Since f(a) is the set of elements that are exactly those elements found in b, by the aziom of
extensionality, f(a) = b. Therefore the function f is surjective.

Bijectivity:

As we have proved that f is both injective and surjective, it is also bijective or invertible. Since there exists
an invertible function f : A — B, there is a one-to-one correspondence between A and B. Q.E.D.

Peer Review ID: 62040661 — enter this when you fill out your peer evaluation via gradescope

3

b) Inverse:

Let f be as in the previous solution:

fla) ={(z,y) |y € a(x)} (1)

We introduce a second function, g, that we will show to be the inverse of f. Since g : B — A, and A is a set
of functions, every g(b) will be a function. We define g as follows:

(9(0))(z) = {y | (2,y) € b} (2)

That is, g(b) returns a function, which when it is presented with the argument z, returns the set {y | (x,y) € b}.

By the definition of invertible, by showing that go f, i.e. g composed with f or g(f(x)), is the identity function:
(9o f)(a) = a, we can show that f and g are each other’s inverses. Let a be an arbitrary element of A, such
that a is a function a : X — P(Y’), that is a function mapping X to P(Y). To show that (go f)(a) = a, we
will show that they behave the same way on all inputs as they are both functions: ((go f)(a))(z) = a(x).

Now we expand (f o g)(x) by definition of f(a) [eq. (1)]:

((go fla)(z) = g({(z,y) | y € a(x)})(x)
Now we expand by definition of (g(b))(z) [eq. (2)]:

((go flla)(z) ={y | (z,y) {(z,y) | y € a(z)}}

Through simplification, we have:

((go f)(a))(z) ={y |y € a(x)}

By the aziom of extensionality, we find that the set of all elements found in a(x) is exactly a(z) itself. Thus,
we have:

((g 0 f)(@))(z) = a(z)

As g o f is indeed the identity function, f and g must be each other’s inverses. Therefore f : A — B is
intervertible, which means that there is a one-to-one correspondence between A and B. Q.E.D.

Peer Review ID: 62040661 — enter this when you fill out your peer evaluation via gradescope

4

2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141

3 Model Checking [10 points]

Download the CPAChecker software model-checking tool using the instructions on the homework webpage. Read
through enough of the manual to run the tool on the tcas.i testcases provided on the homework webpage. Check
the three proprerties given. For each command, copy or screenshot the last ten non-empty lines (or all of the lines
you have, if you have fewer than ten) of (standard, terminal) output from CPAChecker and include them as part
of your answer to this question.

For this part of the assignment, we will be looking at a Traffic Collision Avoidance System or a Traffic Alert and
Collision Avoidance System (TCAS). The goal of such a system is to reduce the chance of mid-air collision between
aircraft. Therefore, it monitors the airspace around an aircraft for other aircraft equipped with a corresponding
transponder, independent of air traffic control, and warns pilots of the presence of other transponder-equipped
aircraft which may present a threat of mid-air collision.

Whenever an airplane approaches, the TCAS will first signal a traffic advisory to alert the pilot for a possible
resolution advisory. For the purpose of this assignment, we only consider the regulatory advisories where the pilot
has to climb or descend to avoid a possible mid-air collision. Once the other aircraft is no longer a threat, the TCAS
signals a clear of conflict. The TCAS has to maintain an up and a down separation, which is how much space is
available above and below of the aircraft relative to other aircraft(s) respectively.

We will now focus on lines 2118-2141 of the tcas.i file, where we check for the violations of certain properties
when the system has to advice the pilot to either climb or descend:

else if (need_upward_RA)
{

propertylb(alim) ;
property2b(alim) ;
property3b(alim) ;
property4b() ;
property5b() ;

alt_sep = 1;
}
else if (need_downward_RA)

{

propertyla(alim) ;
property2a(alim) ;
property3a(alim) ;
property4a() ;
propertyb5a() ;

alt_sep = 2;

In case the advice is to climb, the properties we care about are 1b and 2b. Property 1b is in violation when the up
separation is less than a certain threshold, but when the down separation is greater than or equal to that threshold.
This checks that we don’t leave too little room above us, while we have a lot of room below us, in which case the
TCAS should have guided us to fly a bit lower instead to maintain enough space above us. Property la is the
inverse for when the advice is to descend. That is property la checks whether we don’t have too little room below
us, while we have a lot of space above us, in which case the TCAS should have guided us to fly a little bit higher
instead.

Finally, property 2b is in violation if the up and down separation are below a certain threshold, but when the up
separation is smaller than the down separation. In this situation, we already have little space above and below us,
and the TCAS system would be guiding us to climb while we have less space above us than below us.

Peer Review ID: 62040661 — enter this when you fill out your peer evaluation via gradescope

5

The following sequence of commands check whether the properties 1a, 1b and 2b are in violation:

1. ./CPAchecker-2.0-unix/scripts/cpa.sh -predicateAnalysis -spec Propertyla.spc tcas.i:

1 Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy.
«s (PredicateCPA:PredicateCPARefiner.<init>, INF0)

2

3 Starting analysis ... (CPAchecker.runAlgorithm, INFO)

4

5 Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

6

7 Verification result: FALSE. Property violation (error label in line 1963) found by chosen configuration.
8 More details about the verification run can be found in the directory "./output".

9 Graphical representation included in the file "./output/Counterexample.l.html".

2. ./CPAchecker-2.0-unix/scripts/cpa.sh -predicateAnalysis -spec Propertylb.spc tcas.i:

1 Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy.
«s (PredicateCPA:PredicateCPARefiner.<init>, INF0)

2

3 Starting analysis ... (CPAchecker.runAlgorithm, INFO)

4

5 Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

6

7 Verification result: TRUE. No property violation found by chosen configuration.

8 More details about the verification run can be found in the directory "./output".

9 Graphical representation included in the file "./output/Report.html".

3. ./CPAchecker-2.0-unix/scripts/cpa.sh -predicateAnalysis -spec Property2b.spc tcas.i:

1 Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy.
«s (PredicateCPA:PredicateCPARefiner.<init>, INF0)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)
Stopping analysis ... (CPAchecker.runAlgorithm, INFO)
Verification result: FALSE. Property violation (error label in line 1997) found by chosen configuration.

More details about the verification run can be found in the directory "./output".
Graphical representation included in the file "./output/Counterexample.l.html".

© 0 N oA W N

That is, property la and 2b are in violation, while property 1b is satisfied. The implications of the properties that
are being violated are that for 1a) that the pilot may be told to descend while there is already little room available
below the airplane, while there is plenty of space above of the airplane and that for 2b) that the pilot may be told
to climb while there is little room left both above and below of the airplane, while the room left above is already
than the room available below the pilot.

In general, the way these properties work is that if they are in violation, the code jumps to an error state and the
CPAChecker tool checks whether that error state can be reached or not. While CPAChecker is definitely a good tool
to use for software where software and system safety is paramount, as is the case with anything related to aviation,
CPAChecker does put some burden on the programmer as the programmer has to check for these properties at
the right places in their code as well as come up with properties for which they should test. Additionally, these
properties should be narrowed down enough to the extent that they can distinguish particular scenarios.

Whether CPAChecker actually works well depends on a number of factors, such as how well does the specification
and therefore the properties cover the set of problems that can occur. If we invert the problem, then one may
consider using tcas.i as a tool to verify whether CPAChecker actually works accordingly, in which case the
question becomes does the tcas.i test case actually cover all the use cases of CPAChecker? To be able to answer
that question, we have to look at what edge cases we can intentionally and perhaps artificially implement in our
test case to find issues with CPAChecker itself. However, in that case it would be beneficial if we evaluate other
software model-checking tools to a) confirm that our program without those edge cases is correct, that b) our edge
cases indeed do what we intended them to do and c) compare whether all those software model-checking tools come

Peer Review ID: 62040661 — enter this when you fill out your peer evaluation via gradescope

6

to same conclusion, and if not, why that is not the case. In addition, it is always good to collect a wide variety of
test cases instead of just tcas.i to verify software model-checking tools. This would not only allow to evaluate for
correctness, but it would allow to evaluate different metrics such as how suitable are certain tools for the problem
at hand, and how well do they perform.

An approach other than software model checking might be to come up with a paradigm where the programmer
is restricted in such a way, that these properties can never be violated to begin with, and this is a very typical
approach for a lot of Rust APIs. For instance, with multi-threading, you can restrict the API in such a way that
locks can only be dropped/freed/unlocked once, which means that you could never violate a property of unlocking
a lock more than once. Of course, this approach requires the developer to rewrite their entire software using that
restricted API, but for new software implementations, this is an approach worth considering.

As there really is no clear cut solution, CPAChecker is definitely a worthwhile tool to consider when you want to
achieve systems safety in avionics. However, if we invert the problem, the tcas.i test case on its own may not be
sufficient to test tools like CPAChecker. It would instead be much more preferable to compare different tools and
different test cases to evaluate such tools, and to be able to actually compare them in regards to different metrics
like correctness, but also usability and performance.

Peer Review ID: 62040661 — enter this when you fill out your peer evaluation via gradescope

7

1HWO
- 0 pts Correct

Peer Review ID: 62040661 — enter this when you fill out your peer evaluation via gradescope

Page 9

