Exercise 0F-2. Set Theory

We begin the proof with some true statements:

Let X and Y be sets.

Let A and B be sets s.t. A=X — P(Y) and B=P(X xY)

We know that for any two sets R and M, the cartesian product is:
RxM={(z,y)|lre X,y Y}

Thus we can rewrite B as: B =P({(z,y)|lr € X,y € Y})

Therefore a member of the set B is a set of tuple(s) of type (x,y).

One way of describing a tuple such as (x, y) is a function such as f(x) = y. We
will use this immediately in our proof.

According to the (optional) course text, any function which can be shown to
have a valid inverse is 1-1. I assume rather than prove this as it is trivial to
see that any invertible function must have a 1-1 mapping otherwise the inverse
would not be a function.

Let the proof proceed by example, proving two arbitrary functions of type f :
A — B and g: B — A exist and they are inverses:

Elements of A are mapped to elements of B which we know to be of the form
(x, y) via some function y = a(x).

Let f be a function s.t. f(a) = {(z,y)|ly € a(z)}

Elements of B, (x, y) must be mapped to single elements of A. To do this we
accept tuples of type (x,y) as b, and return the y element under the assumption
we are dealing with a bijection.

Let g be a function s.t. g((z,y)) = y = g(b) where y is a set of function(s)
because the type of g is a set of functions, so g((z,y)) = y(z) = g(b).

We now compose these functions and prove that g is the inverse of f.

9(f(a)) = a = g({(z,y)ly € a(x)})

Peer Review ID: 62042345 — enter this when you fill out your peer evaluation via gradescope

Because a € A and b € B are some arbitrary members of A and B we have

shown:

Va € A,be B, (fog(a)=a)

By showing that f o g(a) = a as constructed, we have proven a bijection f :

B — A.

Exercise 0F-3. Model Checking

Propertyla CPAChecker Output

anguage C detected and set for analysis (CPAMain.detectFrontendLanguageIfNecessary, INFO)

sing the following resource limits: CPU-time limit of 900s (ResourceLimitChecker.
fromConfiguration, INFO)

CPAchecker 2.0.1-svn / predicateAnalysis (OpenJDK 64-Bit Server VM 11.0.9.1) started (
CPAchecker.run, INFO)

arsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

sing predicate analysis with MathSAT5 version 5.6.5 (63ef7602814c) (Nov 9 2020 09:01:58,
gmp 6.1.2, gcc 7.5.0, 64-bit, reentrant) and JFactory 1.21. (PredicateCPA:PredicateCPA
.<init>, INF0)

sing refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy
(PredicateCPA:PredicateCPARefiner.<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)

Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

erification result: FALSE. Property violation (error label in line 1963) found by chosen
configuration.

[More details about the verification run can be found in the directory "./output".
Graphical representation included in the file "./output/Counterexample.l.html".

Propertylb CPAChecker Output

anguage C detected and set for analysis (CPAMain.detectFrontendLanguageIfNecessary, INFI

Peer Review ID: 62042345 enter this when you fill out your peer evaluation via gradescope

sing the following resource limits: CPU-time limit of 900s (ResourceLimitChecker.
fromConfiguration, INFO)

CPAchecker 2.0.1-svn / predicateAnalysis (OpenJDK 64-Bit Server VM 11.0.9.1) started (
CPAchecker.run, INFO)

arsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

sing predicate analysis with MathSAT5 version 5.6.5 (63ef7602814c) (Nov 9 2020 09:01:58,
gmp 6.1.2, gcc 7.5.0, 64-bit, reentrant) and JFactory 1.21. (PredicateCPA:PredicateCPA
.<init>, INF0)

sing refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy
(PredicateCPA:PredicateCPARefiner.<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)
Stopping analysis ... (CPAchecker.runAlgorithm, INFO)
erification result: TRUE. No property violation found by chosen configuration.

[More details about the verification run can be found in the directory "./output".
Graphical representation included in the file "./output/Report.html".

Property2b CPAChecker Output

anguage C detected and set for analysis (CPAMain.detectFrontendLanguageIfNecessary, INFO)

sing the following resource limits: CPU-time limit of 900s (ResourceLimitChecker.
fromConfiguration, INFO)

CPAchecker 2.0.1-svn / predicateAnalysis (OpenJDK 64-Bit Server VM 11.0.9.1) started (
CPAchecker.run, INFO)

arsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO0)

sing predicate analysis with MathSAT5 version 5.6.5 (63ef7602814c) (Nov 9 2020 09:01:58,
gmp 6.1.2, gcc 7.5.0, 64-bit, reentrant) and JFactory 1.21. (PredicateCPA:PredicateCPA
.<init>, INFQ)

sing refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy
(PredicateCPA:PredicateCPARefiner.<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)

Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

erification result: FALSE. Property violation (error label in line 1997) found by chosen
configuration.
[More details about the verification run can be found in the directory "./output".
Graphical representation included in the file "./output/Counterexample.l.html".

How CPAChecker Model Checks

CPAChecker appears to be model checking using some older methods. Accord-
ing to the literature they use MathSAT to do SMT solving, and JavaBDD.
BDD’s or binary decision diagrams are an interesting, but somewhat outdated
method of model checking as they can be exponential in some cases, and even
exponential in the best case under some functions [1]. The SMT solver Math-
SAT is a robust tool that historically focused on interpolation. While interpo-
lation continues to be used in some model checking applications it has become
outpaced by IC3/PDR style model checking tools [2]. CPAChecker is using in-
terpolation to over-approximate the reachable set of states and checking if the

Peer Review ID: 62042345 enter this when you fill out your peer evaluation via gradescope

property violation in reachable. If the over-approximation contains the violation
but the actual reachable set does not, the abstraction is refined. As always, this
assumes correctness of the underlying solver as well as the CPAChecker code,
which may not always be a safe assumption.

My Thoughts and Experiences Using CPAChecker

Propertyla.spec simply matches the location Propertyla (being non-case sen-
sative) and checks if the error state is a successor. The Propertyla description
in tcas.i describes an error occurring when the thresh-hold for up separation
is exceeded and the thresh-hold for down separation is not exceeded. We can
look at line 2118 for the statement “if (need-downward RA)” and see that
properties la - 5a are all concerned with a downward readjustment. To make
sense of Propertyla, assume our craft needs to readjust downward. We check
if it’s the case that our thresh-hold for downward separation is really not met,
if the thresh-hold is met, our command to move down must cause an unsafe
path and is therefore an error. Additionally, we check that we really need to
move downwards, if the thresh-hold for upward separation is actually not met,
then the downward adjustment may be erroneous. We check the condition is
P — —[Up_Separation > thresh A Down_Separation < thresh]. tcas.iis a
strong test suite as it is a “real world” C application which has life or death
consequences. Further because some properties hold and others do not hold we
can test the ability of CPAChecker to find bugs or provide proofs that the model
is sound. The properties 1a and 2b are shown above to be untrue. This implies
that the system may reach error states depending on the inputs (up/down sep-
aration), meaning the code is unsafe.

Because we found errors, it’s possible to retrace our steps to find out what
led to the unsafe execution. CPAChecker supplies a graphical error trace but
I found the Counterexample.l.assignment.txt file to be the most helpful
for the propertyla violation. We can see in this file that the Up_Separation
is set to approximately 232, thresh is set to 500, and Down_Separation is set
to 88. Once we enter Propertyla with those conditions it clearly errors out.
The CPAChecker allows us to reason quickly over a specific property and see
if it holds globally across all valid inputs across around two thousand lines of
code. The tool allows a student like me to verify (or in our case falsify) the
code in a matter of seconds. We as engineers build systems of increasing power
and complexity, and as we do so we need to increase our ability to automate
verification to keep up. The same way a civil engineer owes a promise that a
structure will be safe, software engineers working in sensitive areas must verify
that the code they’ve written is sound.

References

[Brall] Aaron R. Bradley. “SAT-Based Model Checking without Unrolling”.
In: Verification, Model Checking, and Abstract Interpretation. Ed.
by Ranjit Jhala and David Schmidt. Vol. 6538. Series Title: Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Hei-

Peer Review ID: 62042345 — enter this when you fill out your peer evaluation via gradescope

delberg, 2011, pp. 70-87. 1SBN: 978-3-642-18274-7 978-3-642-18275-
4. DOI: 10.1007/978-3-642-18275-4_7. URL: http://1link.
springer . com/ 10 . 1007 /978 -3 -642-18275-4 _7 (visited on
01/30/2021).

[EMB11] Niklas Een, Alan Mishchenko, and Robert Brayton. “Efficient Im-
plementation of Property Directed Reachability”. In: (2011).

Peer Review ID: 62042345 — enter this when you fill out your peer evaluation via gradescope

1HWO
- 0 pts Correct

Peer Review ID: 62042345 — enter this when you fill out your peer evaluation via gradescope

Page 8

